34
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aspects of Point-of-Care Diagnostics for Personalized Health Wellness

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advancements in analytical diagnostic systems for point-of-care (POC) application have gained considerable attention because of their rapid operation at the site required to manage severe diseases, even in a personalized manner. The POC diagnostic devices offer easy operation, fast analytical outcome, and affordable cost, which promote their advanced research and versatile adoptability. Keeping advantages in view, considerable efforts are being made to design and develop smart sensing components such as miniaturized transduction, interdigitated electrodes-based sensing chips, selective detection at low level, portable packaging, and sustainable durability to promote POC diagnostics according to the needs of patient care. Such effective diagnostics systems are in demand, which creates the challenge to make them more efficient in every aspect to generate a desired bio-informatic needed for better health access and management. Keeping advantages and scope in view, this mini review focuses on practical scenarios associated with miniaturized analytical diagnostic devices at POC application for targeted disease diagnostics smartly and efficiently. Moreover, advancements in technologies, such as smartphone-based operation, paper-based sensing assays, and lab-on-a-chip (LOC) which made POC more sensitive, informative, and suitable for major infectious disease diagnosis, are the main focus here. Besides, POC diagnostics based on automated patient sample integration with a sensing platform is continuously improving therapeutics interventions against specific infectious disease. This review also discussed challenges associated with state-of-the-art technology along with future research opportunities to design and develop next generation POC diagnostic systems needed to manage infectious diseases in a personalized manner.

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found

          Diagnosing COVID-19: The Disease and Tools for Detection

          COVID-19 has spread globally since its discovery in Hubei province, China in December 2019. A combination of computed tomography imaging, whole genome sequencing, and electron microscopy were initially used to screen and identify SARS-CoV-2, the viral etiology of COVID-19. The aim of this review article is to inform the audience of diagnostic and surveillance technologies for SARS-CoV-2 and their performance characteristics. We describe point-of-care diagnostics that are on the horizon and encourage academics to advance their technologies beyond conception. Developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak would be useful in preventing future epidemics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in paper-based point-of-care diagnostics.

            Advanced diagnostic technologies, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), have been widely used in well-equipped laboratories. However, they are not affordable or accessible in resource-limited settings due to the lack of basic infrastructure and/or trained operators. Paper-based diagnostic technologies are affordable, user-friendly, rapid, robust, and scalable for manufacturing, thus holding great potential to deliver point-of-care (POC) diagnostics to resource-limited settings. In this review, we present the working principles and reaction mechanism of paper-based diagnostics, including dipstick assays, lateral flow assays (LFAs), and microfluidic paper-based analytical devices (μPADs), as well as the selection of substrates and fabrication methods. Further, we report the advances in improving detection sensitivity, quantification readout, procedure simplification and multi-functionalization of paper-based diagnostics, and discuss the disadvantages of paper-based diagnostics. We envision that miniaturized and integrated paper-based diagnostic devices with the sample-in-answer-out capability will meet the diverse requirements for diagnosis and treatment monitoring at the POC. © 2013 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paper-based microfluidic point-of-care diagnostic devices.

              Dipstick and lateral-flow formats have dominated rapid diagnostics over the last three decades. These formats gained popularity in the consumer markets due to their compactness, portability and facile interpretation without external instrumentation. However, lack of quantitation in measurements has challenged the demand of existing assay formats in consumer markets. Recently, paper-based microfluidics has emerged as a multiplexable point-of-care platform which might transcend the capabilities of existing assays in resource-limited settings. However, paper-based microfluidics can enable fluid handling and quantitative analysis for potential applications in healthcare, veterinary medicine, environmental monitoring and food safety. Currently, in its early development stages, paper-based microfluidics is considered a low-cost, lightweight, and disposable technology. The aim of this review is to discuss: (1) fabrication of paper-based microfluidic devices, (2) functionalisation of microfluidic components to increase the capabilities and the performance, (3) introduction of existing detection techniques to the paper platform and (4) exploration of extracting quantitative readouts via handheld devices and camera phones. Additionally, this review includes challenges to scaling up, commercialisation and regulatory issues. The factors which limit paper-based microfluidic devices to become real world products and future directions are also identified.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                14 January 2021
                2021
                : 16
                : 383-402
                Affiliations
                [1 ]Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology , Hisar, Haryana 125001, India
                [2 ]National Agri-Food Biotechnology Institute (NABI) , Mohali, Punjab, India
                [3 ]NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University , Lakeland, FL, 33805-8531, USA
                [4 ]Department of Civil & Environmental Engineering, Hanyang University , Seoul 04763, Republic of Korea
                Author notes
                Correspondence: Sandeep Kumar Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology , Hisar, Haryana125001, India Email ksandeep36@yahoo.com
                Ki-Hyun Kim Department of Civil & Environmental Engineering, Hanyang University , 222 Wangsimni-Ro, Seoul04763, Republic of Korea Email kkim61@hanyang.ac.kr
                Author information
                http://orcid.org/0000-0001-5555-4498
                http://orcid.org/0000-0003-4206-1541
                Article
                267212
                10.2147/IJN.S267212
                7814661
                33488077
                0c30c621-cb7e-42c2-bbe8-95faed3c3beb
                © 2021 Kumar et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 11 June 2020
                : 24 September 2020
                Page count
                Figures: 9, Tables: 2, References: 160, Pages: 20
                Categories
                Review

                Molecular medicine
                point-of-care devices,infectious diseases,lateral flow strips,microfluidics
                Molecular medicine
                point-of-care devices, infectious diseases, lateral flow strips, microfluidics

                Comments

                Comment on this article