Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Review on a Traditional Herbal Medicine, Eurycoma longifolia Jack (Tongkat Ali): Its Traditional Uses, Chemistry, Evidence-Based Pharmacology and Toxicology

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Eurycoma longifolia Jack (known as tongkat ali), a popular traditional herbal medicine, is a flowering plant of the family Simaroubaceae, native to Indonesia, Malaysia, Vietnam and also Cambodia, Myanmar, Laos and Thailand. E. longifolia, is one of the well-known folk medicines for aphrodisiac effects as well as intermittent fever (malaria) in Asia. Decoctions of E. longifolia leaves are used for washing itches, while its fruits are used in curing dysentery. Its bark is mostly used as a vermifuge, while the taproots are used to treat high blood pressure, and the root bark is used for the treatment of diarrhea and fever. Mostly, the roots extract of E. longifolia are used as folk medicine for sexual dysfunction, aging, malaria, cancer, diabetes, anxiety, aches, constipation, exercise recovery, fever, increased energy, increased strength, leukemia, osteoporosis, stress, syphilis and glandular swelling. The roots are also used as an aphrodisiac, antibiotic, appetite stimulant and health supplement. The plant is reported to be rich in various classes of bioactive compounds such as quassinoids, canthin-6-one alkaloids, β-carboline alkaloids, triterpene tirucallane type, squalene derivatives and biphenyl neolignan, eurycolactone, laurycolactone, and eurycomalactone, and bioactive steroids. Among these phytoconstituents, quassinoids account for a major portion of the E. longifolia root phytochemicals. An acute toxicity study has found that the oral Lethal Dose 50 (LD 50) of the alcoholic extract of E. longifolia in mice is between 1500–2000 mg/kg, while the oral LD 50 of the aqueous extract form is more than 3000 mg/kg. Liver and renal function tests showed no adverse changes at normal daily dose and chronic use of E. longifolia. Based on established literature on health benefits of E. longifolia, it is important to focus attention on its more active constituents and the constituents’ identification, determination, further development and most importantly, the standardization. Besides the available data, more evidence is required regarding its therapeutic efficacy and safety, so it can be considered a rich herbal source of new drug candidates. It is very important to conserve this valuable medicinal plant for the health benefit of future generations.

      Related collections

      Most cited references 207

      • Record: found
      • Abstract: found
      • Article: not found

      World Health Organization reference values for human semen characteristics.

      Semen quality is taken as a surrogate measure of male fecundity in clinical andrology, male fertility, reproductive toxicology, epidemiology and pregnancy risk assessments. Reference intervals for values of semen parameters from a fertile population could provide data from which prognosis of fertility or diagnosis of infertility can be extrapolated. Semen samples from over 4500 men in 14 countries on four continents were obtained from retrospective and prospective analyses on fertile men, men of unknown fertility status and men selected as normozoospermic. Men whose partners had a time-to-pregnancy (TTP) of < or =12 months were chosen as individuals to provide reference distributions for semen parameters. Distributions were also generated for a population assumed to represent the general population. The following one-sided lower reference limits, the fifth centiles (with 95th percent confidence intervals), were generated from men whose partners had TTP < or = 12 months: semen volume, 1.5 ml (1.4-1.7); total sperm number, 39 million per ejaculate (33-46); sperm concentration, 15 million per ml (12-16); vitality, 58% live (55-63); progressive motility, 32% (31-34); total (progressive + non-progressive) motility, 40% (38-42); morphologically normal forms, 4.0% (3.0-4.0). Semen quality of the reference population was superior to that of the men from the general population and normozoospermic men. The data represent sound reference distributions of semen characteristics of fertile men in a number of countries. They provide an appropriate tool in conjunction with clinical data to evaluate a patient's semen quality and prospects for fertility.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline.

        Our objective was to update the guidelines for the evaluation and treatment of androgen deficiency syndromes in adult men published previously in 2006. The Task Force was composed of a chair, selected by the Clinical Guidelines Subcommittee of The Endocrine Society, five additional experts, a methodologist, and a medical writer. The Task Force received no corporate funding or remuneration. We recommend making a diagnosis of androgen deficiency only in men with consistent symptoms and signs and unequivocally low serum testosterone levels. We suggest the measurement of morning total testosterone level by a reliable assay as the initial diagnostic test. We recommend confirmation of the diagnosis by repeating the measurement of morning total testosterone and, in some men in whom total testosterone is near the lower limit of normal or in whom SHBG abnormality is suspected by measurement of free or bioavailable testosterone level, using validated assays. We recommend testosterone therapy for men with symptomatic androgen deficiency to induce and maintain secondary sex characteristics and to improve their sexual function, sense of well-being, muscle mass and strength, and bone mineral density. We recommend against starting testosterone therapy in patients with breast or prostate cancer, a palpable prostate nodule or induration or prostate-specific antigen greater than 4 ng/ml or greater than 3 ng/ml in men at high risk for prostate cancer such as African-Americans or men with first-degree relatives with prostate cancer without further urological evaluation, hematocrit greater than 50%, untreated severe obstructive sleep apnea, severe lower urinary tract symptoms with International Prostate Symptom Score above 19, or uncontrolled or poorly controlled heart failure. When testosterone therapy is instituted, we suggest aiming at achieving testosterone levels during treatment in the mid-normal range with any of the approved formulations, chosen on the basis of the patient's preference, consideration of pharmacokinetics, treatment burden, and cost. Men receiving testosterone therapy should be monitored using a standardized plan.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Normalization of the vasculature for treatment of cancer and other diseases.

          New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a "normalization" of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more "mature" or "normal" phenotype. This "vascular normalization" is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the efficacy of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells shed by tumors into circulation in mice. These findings are consistent with data from clinical trials of anti-VEGF agents in patients with various solid tumors. More recently, genetic and pharmacological approaches have begun to unravel some other key regulators of vascular normalization such as proteins that regulate tissue oxygen sensing (PHD2) and vessel maturation (PDGFRβ, RGS5, Ang1/2, TGF-β). Here, we review the pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases.
            Bookmark

            Author and article information

            Affiliations
            Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea; dr.shaheedmarwat@ 123456yahoo.com (S.U.R.); kkchoe@ 123456hanyang.ac.kr (K.C.)
            Author notes
            [* ] Correspondence: yoohh@ 123456hanyang.ac.kr ; Tel.: +82-31-400-5804
            Contributors
            Role: Academic Editor
            Journal
            Molecules
            Molecules
            molecules
            Molecules
            MDPI
            1420-3049
            10 March 2016
            March 2016
            : 21
            : 3
            26978330 6274257 10.3390/molecules21030331 molecules-21-00331
            © 2016 by the authors.

            Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

            Categories
            Review

            Comments

            Comment on this article