25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging Anti-Aging Strategies - Scientific Basis and Efficacy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer’s disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer’s disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.

          Related collections

          Most cited references184

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs

          The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1 −/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1 −/Δ mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Lipid peroxidation in cell death.

            Disruption of redox homeostasis is a key phenotype of many pathological conditions. Though multiple oxidizing compounds such as hydrogen peroxide are widely recognized as mediators and inducers of oxidative stress, increasingly, attention is focused on the role of lipid hydroperoxides as critical mediators of death and disease. As the main component of cellular membranes, lipids have an indispensible role in maintaining the structural integrity of cells. Excessive oxidation of lipids alters the physical properties of cellular membranes and can cause covalent modification of proteins and nucleic acids. This review discusses the synthesis, toxicity, degradation, and detection of lipid peroxides in biological systems. Additionally, the role of lipid peroxidation is highlighted in cell death and disease, and strategies to control the accumulation of lipid peroxides are discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.

              As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts--in which circulatory systems of young and aged animals are connected--identified synaptic plasticity-related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function.
                Bookmark

                Author and article information

                Journal
                Aging Dis
                Aging Dis
                Aging and Disease
                JKL International LLC
                2152-5250
                December 2018
                4 December 2018
                : 9
                : 6
                : 1165-1184
                Affiliations
                [1-ad-9-6-1165] 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
                [2-ad-9-6-1165] 2Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
                Author notes
                [* ]Correspondence should be addressed to: Dr. Ashok K. Shetty, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX 77845, USA. E-mail: shetty@ 123456medicine.tamhsc.edu
                Article
                ad-9-6-1165
                10.14336/AD.2018.1026
                6284760
                30574426
                0c423657-05b3-4851-8063-ebbda9e21962
                Copyright: © 2018 Ashok et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 17 October 2018
                : 28 November 2018
                : 30 November 2018
                Categories
                Review

                aging,antioxidants,astragalus,autophagy,curcumin,intermittent fasting,neurogenesis,plasma transfusion,physical exercise,resveratrol,senescent cells,senolytics,stem cells,stem cell therapy,telomeres

                Comments

                Comment on this article