20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Next-generation approaches to understand and combat the antibiotic resistome

      , ,
      Nature Reviews Microbiology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibiotic resistance is a global problem that threatens individual and societal well-being. In this Review, Crofts, Gasparrini and Dantas summarize how research has changed from the discovery of resistant bacteria to community-level resistome studies, and they propose future therapeutic and surveillance approaches.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          The comprehensive antibiotic resistance database.

          The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study

            Summary Background Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are potentially a major global health problem. We investigated the prevalence of NDM-1, in multidrug-resistant Enterobacteriaceae in India, Pakistan, and the UK. Methods Enterobacteriaceae isolates were studied from two major centres in India—Chennai (south India), Haryana (north India)—and those referred to the UK's national reference laboratory. Antibiotic susceptibilities were assessed, and the presence of the carbapenem resistance gene bla NDM-1 was established by PCR. Isolates were typed by pulsed-field gel electrophoresis of XbaI-restricted genomic DNA. Plasmids were analysed by S1 nuclease digestion and PCR typing. Case data for UK patients were reviewed for evidence of travel and recent admission to hospitals in India or Pakistan. Findings We identified 44 isolates with NDM-1 in Chennai, 26 in Haryana, 37 in the UK, and 73 in other sites in India and Pakistan. NDM-1 was mostly found among Escherichia coli (36) and Klebsiella pneumoniae (111), which were highly resistant to all antibiotics except to tigecycline and colistin. K pneumoniae isolates from Haryana were clonal but NDM-1 producers from the UK and Chennai were clonally diverse. Most isolates carried the NDM-1 gene on plasmids: those from UK and Chennai were readily transferable whereas those from Haryana were not conjugative. Many of the UK NDM-1 positive patients had travelled to India or Pakistan within the past year, or had links with these countries. Interpretation The potential of NDM-1 to be a worldwide public health problem is great, and co-ordinated international surveillance is needed. Funding European Union, Wellcome Trust, and Wyeth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Waves of resistance: Staphylococcus aureus in the antibiotic era.

              Staphylococcus aureus is notorious for its ability to become resistant to antibiotics. Infections that are caused by antibiotic-resistant strains often occur in epidemic waves that are initiated by one or a few successful clones. Methicillin-resistant S. aureus (MRSA) features prominently in these epidemics. Historically associated with hospitals and other health care settings, MRSA has now emerged as a widespread cause of community infections. Community or community-associated MRSA (CA-MRSA) can spread rapidly among healthy individuals. Outbreaks of CA-MRSA infections have been reported worldwide, and CA-MRSA strains are now epidemic in the United States. Here, we review the molecular epidemiology of the epidemic waves of penicillin- and methicillin-resistant strains of S. aureus that have occurred since 1940, with a focus on the clinical and molecular epidemiology of CA-MRSA.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Microbiology
                Nat Rev Micro
                Springer Nature
                1740-1526
                1740-1534
                April 10 2017
                April 10 2017
                :
                :
                Article
                10.1038/nrmicro.2017.28
                5681478
                28392565
                0c44bc25-f9ee-4dc6-ab4f-0be91bf198b1
                © 2017
                History

                Comments

                Comment on this article