42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alzheimer's Associated β-Amyloid Protein Inhibits Influenza A Virus and Modulates Viral Interactions with Phagocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulation of β-Amyloid (βA) is a key pathogenetic factor in Alzheimer's disease; however, the normal function of βA is unknown. Recent studies have shown that βA can inhibit growth of bacteria and fungi. In this paper we show that βA also inhibits replication of seasonal and pandemic strains of H3N2 and H1N1 influenza A virus (IAV) in vitro. The 42 amino acid fragment of βA (βA42) had greater activity than the 40 amino acid fragment. Direct incubation of the virus with βA42 was needed to achieve optimal inhibition. Using quantitative PCR assays βA42 was shown to reduce viral uptake by epithelial cells after 45 minutes and to reduce supernatant virus at 24 hours post infection. βA42 caused aggregation of IAV particles as detected by light transmission assays and electron and confocal microscopy. βA42 did not stimulate neutrophil H 2O 2 production or extracellular trap formation on its own, but it increased both responses stimulated by IAV. In addition, βA42 increased uptake of IAV by neutrophils. βA42 reduced viral protein synthesis in monocytes and reduced IAV-induced interleukin-6 production by these cells. Hence, we demonstrate for the first time that βA has antiviral activity and modulates viral interactions with phagocytes.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Alarmins: chemotactic activators of immune responses.

          The recruitment and activation of antigen-presenting cells are critical early steps in mounting an immune response. Many microbial components and endogenous mediators participate in this process. Recent studies have identified a group of structurally diverse multifunctional host proteins that are rapidly released following pathogen challenge and/or cell death and, most importantly, are able to both recruit and activate antigen-presenting cells. These potent immunostimulants, including defensins, cathelicidin, eosinophil-derived neurotoxin, and high-mobility group box protein 1, serve as early warning signals to activate innate and adaptive immune systems. We propose to highlight these proteins' unique activities by grouping them under the novel term 'alarmins', in recognition of their role in mobilizing the immune system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease.

            Progressive cerebral deposition of the amyloid β-protein (Aβ) in brain regions serving memory and cognition is an invariant and defining feature of Alzheimer disease. A highly similar but less robust process accompanies brain aging in many nondemented humans, lower primates, and some other mammals. The discovery of Aβ as the subunit of the amyloid fibrils in meningocerebral blood vessels and parenchymal plaques has led to innumerable studies of its biochemistry and potential cytotoxic properties. Here we will review the discovery of Aβ, numerous aspects of its complex biochemistry, and current attempts to understand how a range of Aβ assemblies, including soluble oligomers and insoluble fibrils, may precipitate and promote neuronal and glial alterations that underlie the development of dementia. Although the role of Aβ as a key molecular factor in the etiology of Alzheimer disease remains controversial, clinical trials of amyloid-lowering agents, reviewed elsewhere in this book, are poised to resolve the question of its pathogenic primacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer's disease.

              Microglia are the immune cells of the brain, they are activated in the brain of Alzheimer's disease (AD) patients and mouse models of AD, and they express the innate immune receptor toll-like receptor 2 (TLR2). The present study investigated role of this receptor in the progression of AD-like pathologies. Here we show that amyloid beta (A beta) stimulates TLR2 expression in a small proportion of microglia. We then generated triple transgenic mice that are deficient in TLR2 from mice that harbor a mutant human presenelin 1 and a chimeric mouse/human amyloid precursor protein (APP) genes. TLR2 deficiency accelerated spatial and contextual memory impairments, which correlated with increased levels of A beta(1-42) and transforming growth factor beta1 in the brain. NMDA receptors 1 and 2A expression levels were also lower in the hippocampus of APP-TLR2(-/-) mice. Gene therapy in cells of the bone marrow using lentivirus constructs expressing TLR2 rescued the cognitive impairment of APP-TLR2(-/-) mice. Indeed, lenti-green fluorescent protein/TLR2 treatment had beneficial effects by restoring the memory consolidation process disrupted by TLR2 deficiency in APP mice. These data suggest that TLR2 acts as an endogenous receptor for the clearance of toxic A beta by bone-marrow-derived immune cells. The cognitive decline is markedly accelerated in a context of TLR2 deficiency. Upregulating this innate immune receptor may then be considered as a potential new powerful therapeutic approach for AD.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                2 July 2014
                : 9
                : 7
                : e101364
                Affiliations
                [1 ]Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [2 ]Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts, United States of America
                [3 ]National Institute of Allergy and Infectious Disease, Bethesda, Maryland, United States of America
                The Hospital for Sick Children and The University of Toronto, Canada
                Author notes

                Competing Interests: Kevan Hartshorn is currently a member of the Editorial Board of PLOS One. This does not alter the authors' adherence to PLOS ONE Editorial policies and criteria.

                Conceived and designed the experiments: MRW RK KLH. Performed the experiments: MRW ST DC LQ. Analyzed the data: MRW RK KLH. Contributed reagents/materials/analysis tools: LQ JT. Wrote the paper: MRW RK KLH.

                Article
                PONE-D-14-05579
                10.1371/journal.pone.0101364
                4079246
                24988208
                0c450a14-f4e4-478b-be7e-deb2e9d50bd4
                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 7 February 2014
                : 5 June 2014
                Page count
                Pages: 9
                Funding
                Funding came from the National Institutes of Health Grant numbers AI-83222 (KLH)and HL 069031 (KLH)and NIH intramural funds (JKT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Microbiology
                Medicine and Health Sciences
                Hematology
                Infectious Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article