+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fidelity Variants of RNA Dependent RNA Polymerases Uncover an Indirect, Mutagenic Activity of Amiloride Compounds


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          In a screen for RNA mutagen resistance, we isolated a high fidelity RNA dependent RNA polymerase (RdRp) variant of Coxsackie virus B3 (CVB3). Curiously, this variant A372V is also resistant to amiloride. We hypothesize that amiloride has a previously undescribed mutagenic activity. Indeed, amiloride compounds increase the mutation frequencies of CVB3 and poliovirus and high fidelity variants of both viruses are more resistant to this effect. We hypothesize that this mutagenic activity is mediated through alterations in intracellular ions such as Mg 2+ and Mn 2+, which in turn increase virus mutation frequency by affecting RdRp fidelity. Furthermore, we show that another amiloride-resistant RdRp variant, S299T, is completely resistant to this mutagenic activity and unaffected by changes in ion concentrations. We show that RdRp variants resist the mutagenic activity of amiloride via two different mechanisms: 1) increased fidelity that generates virus populations presenting lower basal mutation frequencies or 2) resisting changes in divalent cation concentrations that affect polymerase fidelity. Our results uncover a new antiviral approach based on mutagenesis.

          Author Summary

          RNA viruses have extreme mutation frequencies, due in large part to the erroneous nature of the viral RNA dependent RNA polymerases (RdRp) that replicate their genomes. Since RdRp lack proofreading and repair mechanisms, the use of base analogs as RNA mutagens to increase lethal mutations and extinguish the virus population is a promising antiviral strategy. Recently, a screen for resistance to this antiviral treatment identified a higher fidelity RdRp variant of poliovirus, indicating that RdRp fidelity can be modulated by single amino acid substitutions. To extend these observations to other viruses, we performed a similar screen using Coxsackie virus B3 (CVB3). We identified a new high fidelity RdRp variant which was also resistant to amiloride compounds that have no known mutagenic activity. Using wild type and RdRp fidelity variants of poliovirus and CVB3, we show that amiloride compounds do have mutagenic activity and act on RNA virus populations indirectly, by altering intracellular ion concentrations that affect polymerase fidelity. Our results identify a new means of targeting viruses through increases in mutation frequency using non-nucleoside compounds that alter the cellular environment in which the virus replicates.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Lethal mutagenesis of HIV with mutagenic nucleoside analogs.

          The human immunodeficiency virus (HIV) replicates its genome and mutates at exceptionally high rates. As a result, the virus is able to evade immunological and chemical antiviral agents. We tested the hypothesis that a further increase in the mutation rate by promutagenic nucleoside analogs would abolish viral replication. We evaluated deoxynucleoside analogs for lack of toxicity to human cells, incorporation by HIV reverse transcriptase, resistance to repair when incorporated into the DNA strand of an RNA.DNA hybrid, and mispairing at high frequency. Among the candidates tested, 5-hydroxydeoxycytidine (5-OH-dC) fulfilled these criteria. In seven of nine experiments, the presence of this analog resulted in the loss of viral replicative potential after 9-24 sequential passages of HIV in human CEM cells. In contrast, loss of viral replication was not observed in 28 control cultures passaged in the absence of the nucleoside analog, nor with other analogs tested. Sequence analysis of a portion of the HIV reverse transcriptase gene demonstrated a disproportionate increase in G --> A substitutions, mutations predicted to result from misincorporation of 5-OH-dC into the cDNA during reverse transcription. Thus, "lethal mutagenesis" driven by the class of deoxynucleoside analogs represented by 5-OH-dC could provide a new approach to treating HIV infections and, potentially, other viral infections.
            • Record: found
            • Abstract: found
            • Article: not found

            Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride.

            A 63 residue peptide, p7, encoded by hepatitis C virus was synthesised and tested for ion channel activity in lipid bilayer membranes. Ion channels formed by p7 had a variable conductance: some channels had conductances as low as 14 pS. The reversal potential of currents flowing through the channels formed by p7 showed that they were permeable to potassium and sodium ions and less permeable to calcium ions. Addition of Ca(2+) to solutions made channels formed by p7 less potassium- or sodium-selective. Hexamethylene amiloride, a drug previously shown to block ion channels formed by Vpu encoded by HIV-1, blocked channels formed by p7. In view of the increasing number of peptides encoded by viruses that have been shown to form ion channels, it is suggested that ion channels may play an important role in the life cycle of many viruses and that drugs that block these channels may prove to be useful antiviral agents.
              • Record: found
              • Abstract: found
              • Article: not found

              Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase.

              The active RNA-dependent RNA polymerase of poliovirus, 3Dpol, is generated by cleavage of the 3CDpro precursor protein, a protease that has no polymerase activity despite containing the entire polymerase domain. By intentionally disrupting a known and persistent crystal packing interaction, we have crystallized the poliovirus polymerase in a new space group and solved the complete structure of the protein at 2.0 A resolution. It shows that the N-terminus of fully processed 3Dpol is buried in a surface pocket where it makes hydrogen bonds that act to position Asp238 in the active site. Asp238 is an essential residue that selects for the 2' OH group of substrate rNTPs, as shown by a 2.35 A structure of a 3Dpol-GTP complex. Mutational, biochemical, and structural data further demonstrate that 3Dpol activity is exquisitely sensitive to mutations at the N-terminus. This sensitivity is the result of allosteric effects where the structure around the buried N-terminus directly affects the positioning of Asp238 in the active site.

                Author and article information

                Role: Editor
                PLoS Pathog
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                October 2010
                October 2010
                28 October 2010
                : 6
                : 10
                : e1001163
                [1 ]Institut Pasteur, Viral Populations and Pathogenesis Lab and CNRS URA3015, Paris, France
                [2 ]Institut Pasteur, Plate Forme de Biophysique des Macromolécules et de leurs Interactions, Paris, France
                [3 ]Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
                Washington University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: LIL NFG JJA MV. Performed the experiments: LIL NFG SB MJM JJA MV. Analyzed the data: LIL NFG SB MJM BB JJA MV. Contributed reagents/materials/analysis tools: BB JJA. Wrote the paper: JJA MV.

                Levi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                : 16 March 2010
                : 24 September 2010
                Page count
                Pages: 14
                Research Article
                Virology/Antivirals, including Modes of Action and Resistance
                Virology/Mechanisms of Resistance and Susceptibility, including Host Genetics
                Virology/New Therapies, including Antivirals and Immunotherapy

                Infectious disease & Microbiology
                Infectious disease & Microbiology


                Comment on this article