46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Myxococcus xanthus Gliding Motors Are Elastically Coupled to the Substrate as Predicted by the Focal Adhesion Model of Gliding Motility

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment.

          Author Summary

          Studies of collective bacterial motility on solid surfaces are essential for understanding self-organization of biofilms. The Gram-negative bacterium Myxococcus xanthus has long been used as a model organism for studying surface motility but its mechanism of gliding is still under investigation. Recent experiments point to two potential mechanisms for gliding motility that differ qualitatively in the details of their cell-substrate interactions. To investigate the biophysical nature of this interaction (viscous vs. elastic coupling), we developed a synergistically multidisciplinary approach combining computational modeling, time-lapse microscopy, and biophysical optical trap experiments. First we studied the mechanical cell interaction behavior in isolated cell pair collisions in a computational model and compared the results with experimental cell behavior. The results indicated a strong adhesive attachment between cell and substrate which is further confirmed by applying opposing loads on beads attached to cell surface in an optical trap. Thus our results conclusively showed strong adhesive attachments between cell and substrate, providing support for an elastic rather than viscous coupling between cell and substrate similar to phenomena observed in focal adhesions from eukaryotic cells.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Force measurements of the alpha5beta1 integrin-fibronectin interaction.

            The interaction of the alpha(5)beta(1) integrin and its ligand, fibronectin (FN), plays a crucial role in the adhesion of cells to the extracellular matrix. An important intrinsic property of the alpha(5)beta(1)/FN interaction is the dynamic response of the complex to a pulling force. We have carried out atomic force microscopy measurements of the interaction between alpha(5)beta(1) and a fibronectin fragment derived from the seventh through tenth type III repeats of FN (i.e., FN7-10) containing both the arg-gly-asp (RGD) sequence and the synergy site. Direct force measurements obtained from an experimental system consisting of an alpha(5)beta(1) expressing K562 cell attached to the atomic force microscopy cantilever and FN7-10 adsorbed on a substrate were used to determine the dynamic response of the alpha(5)beta(1)/FN7-10 complex to a pulling force. The experiments were carried out over a three-orders-of-magnitude change in loading rate and under conditions that allowed for detection of individual alpha(5)beta(1)/FN7-10 interactions. The dynamic rupture force of the alpha(5)beta(1)/FN7-10 complex revealed two regimes of loading: a fast loading regime (>10,000 pN/s) and a slow loading regime (<10,000 pN/s) that characterize the inner and outer activation barriers of the complex, respectively. Activation by TS2/16 antibody increased both the frequency of adhesion and elevated the rupture force of the alpha(5)beta(1)/wild type FN7-10 complex to higher values in the slow loading regime. In experiments carried out with a FN7-10 RGD deleted mutant, the force measurements revealed that both inner and outer activation barriers were suppressed by the mutation. Mutations to the synergy site of FN, however, suppressed only the outer barrier activation of the complex. For both the RGD and synergy deletions, the frequency of adhesion was less than that of the wild type FN7-10, but was increased by integrin activation. The rupture force of these mutants was only slightly less than that of the wild type, and was not increased by activation. These results suggest that integrin activation involved a cooperative interaction with both the RGD and synergy sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus.

              Y. Li, H. Sun, X Ma (2003)
              Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming and fruiting-body formation. Social (S)-motility (coordinated movement of large cell groups) requires both type IV pili and fibrils (extracellular matrix material consisting of polysaccharides and protein). Little is known about the role of this extracellular matrix, or fibril material, in pilus-dependent motility. In this study, mutants lacking fibril material and, therefore, S-motility were found to be hyperpiliated. We demonstrated that addition of fibril material resulted in pilus retraction and rescued this phenotype. The fibril material was further examined to determine the component(s) that were responsible for triggering pilus retraction. Protein-free fibril material was found to be highly active in correcting hyperpiliation. However, the amine sugars present in hydrolyzed fibril material, e.g., glucosamine and N-acetylglucosamine (GlcNAc) had no effect on fibril(-) mutants, but, interestingly, cause hyperpiliation in wild-type cells. In contrast, chitin, a natural GlcNAc polymer, was found to restore pilus retraction in hyperpiliated mutants, indicating that a polysaccharide containing amine sugars is likely required for pilus retraction. These data suggest that the interaction of type IV pili with amine-containing polysaccharides on cell and slime-trail surfaces may trigger pilus retraction, resulting in S-motility and slime-trailing behaviors.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                May 2014
                8 May 2014
                : 10
                : 5
                : e1003619
                Affiliations
                [1 ]Department of Bioengineering, Rice University, Houston, Texas, United States of America
                [2 ]Department of Microbiology and Molecular Genetics, University of Texas – Houston Medical School, Houston, Texas, United States of America
                [3 ]Department of Physics and the Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
                Aberystwyth University, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RB DBL FC MS HBK JWS OAI. Performed the experiments: RB DBL FC MS. Analyzed the data: RB FC MS JWS OAI. Wrote the paper: RB FC HBK JWS OAI.

                Article
                PCOMPBIOL-D-14-00203
                10.1371/journal.pcbi.1003619
                4014417
                24810164
                0c582470-7e0b-4af9-bd71-9b27c5594aa5
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 February 2014
                : 27 March 2014
                Page count
                Pages: 12
                Funding
                This work was supported by National Science Foundation CAREER awards to OAI (MCB-0845919) and JWS (PHY-0844466). The simulations were performed using Rice University cyber infrastructure supported by NSF Grants CNS-0821727 and OCI-0959097. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Research and Analysis Methods
                Model Organisms
                Prokaryotic Models
                Biology and Life Sciences
                Cell Biology
                Cell Motility
                Biophysics
                Biophysical Simulations
                Organisms
                Bacteria
                Myxococcus
                Myxococcus Xanthus
                Computational Biology
                Ecology
                Microbial Ecology
                Biofilms
                Bacterial Biofilms
                Microbiology
                Bacteriology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article