23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary fatty acids fine-tune Piezo1 mechanical response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. The Piezo1 channel mediates mechanoelectrical transduction and regulates crucial physiological processes, including vascular architecture and remodeling, cell migration, and erythrocyte volume. The identity of the membrane components that modulate Piezo1 function remain largely unknown. Using lipid profiling analyses, we here identify dietary fatty acids that tune Piezo1 mechanical response. We find that margaric acid, a saturated fatty acid present in dairy products and fish, inhibits Piezo1 activation and polyunsaturated fatty acids (PUFAs), present in fish oils, modulate channel inactivation. Force measurements reveal that margaric acid increases membrane bending stiffness, whereas PUFAs decrease it. We use fatty acid supplementation to abrogate the phenotype of gain-of-function Piezo1 mutations causing human dehydrated hereditary stomatocytosis. Beyond Piezo1, our findings demonstrate that cell-intrinsic lipid profile and changes in the fatty acid metabolism can dictate the cell’s response to mechanical cues.

          Abstract

          Piezo channels are mechanosensitive and rely on membrane composition to transduce physical stimuli into electrical signals. Here authors analyse the membrane components that modulate Piezo1 function using lipid profiling which shows that fatty acid metabolism can modulate ion channel activity.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Piezo1, a mechanically activated ion channel, is required for vascular development in mice.

          Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Chemical activation of the mechanotransduction channel Piezo1

            Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ∼3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function. DOI: http://dx.doi.org/10.7554/eLife.07369.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells.

              Neural stem cells are multipotent cells with the ability to differentiate into neurons, astrocytes, and oligodendrocytes. Lineage specification is strongly sensitive to the mechanical properties of the cellular environment. However, molecular pathways transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification remain unclear. We found that the mechanically gated ion channel Piezo1 is expressed by brain-derived human neural stem/progenitor cells and is responsible for a mechanically induced ionic current. Piezo1 activity triggered by traction forces elicited influx of Ca(2+), a known modulator of differentiation, in a substrate-stiffness-dependent manner. Inhibition of channel activity by the pharmacological inhibitor GsMTx-4 or by siRNA-mediated Piezo1 knockdown suppressed neurogenesis and enhanced astrogenesis. Piezo1 knockdown also reduced the nuclear localization of the mechanoreactive transcriptional coactivator Yes-associated protein. We propose that the mechanically gated ion channel Piezo1 is an important determinant of mechanosensitive lineage choice in neural stem cells and may play similar roles in other multipotent stem cells.
                Bookmark

                Author and article information

                Contributors
                vvasquez@uthsc.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                13 March 2019
                13 March 2019
                2019
                : 10
                : 1200
                Affiliations
                [1 ]ISNI 0000 0004 0386 9246, GRID grid.267301.1, Department of Physiology, College of Medicine, , University of Tennessee Health Science Center, ; 71S. Manassas St., Memphis, TN 38163 USA
                [2 ]ISNI 0000 0004 0386 9246, GRID grid.267301.1, Department of Pharmaceutical Sciences and Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, , University of Tennessee Health Science Center, ; 881 Madison Ave., Memphis, TN 38163 USA
                [3 ]ISNI 0000 0004 4688 1229, GRID grid.488979.3, Centro de Investigación Biomédica, , Hospital Zambrano Hellion, ; TecSalud, Ave. Batallon de San Patricio 112, 66278 San Pedro Garza García, Nuevo León Mexico
                [4 ]Present Address: Tecnólogico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León Mexico
                Author information
                http://orcid.org/0000-0001-9855-7592
                http://orcid.org/0000-0002-3347-5120
                http://orcid.org/0000-0002-6505-5403
                http://orcid.org/0000-0001-8494-1534
                Article
                9055
                10.1038/s41467-019-09055-7
                6416271
                30867417
                0c5e877e-2d27-4d5c-a8a3-0abf8fba2760
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 October 2018
                : 18 February 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article