22
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of transducin β-like 1 X-linked receptor 1 (TBL1XR1) in thyroid hormone metabolism and action in mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transducin β-like 1 X-linked receptor 1 (TBL1XR1) is a WD40 repeat-containing protein and part of the corepressor complex SMRT/NCoR that binds to the thyroid hormone receptor (TR). We recently described a mutation in TBL1XR1 in patients with Pierpont syndrome. A mouse model bearing this Tbl1xr1 mutation ( Tbl1xr1 Y446C/Y446C ) displays several aspects of the Pierpont phenotype. Although serum thyroid hormone (TH) concentrations were unremarkable in these mice, tissue TH action might be affected due to the role of TBL1XR1 in the SMRT/NCoR corepressor complex. The aim of the present study was to evaluate tissue TH metabolism and action in a variety of tissues of Tbl1xr1 Y446C/Y446C mice. We studied the expression of genes involved in TH metabolism and action in tissues of naïve Tbl1xr1 Y446C/Y446C mice and wild type (WT) mice. In addition, we measured deiodinase activity in liver (Dio1 and Dio3), kidney (Dio1 and Dio3) and BAT (Dio2). No striking differences were observed in the liver, hypothalamus, muscle and BAT between Tbl1xr1 Y446C/Y446C and WT mice. Pituitary TRα1 mRNA expression was lower in Tbl1xr1 Y446C/Y446C mice compared to WT, while the mRNA expression of Tshβ and the positively T3-regulated gene Nmb were significantly increased in mutant mice. Interestingly, Mct8 expression was markedly higher in WAT and kidney of mutants, resulting in (subtle) changes in T3-regulated gene expression in both WAT and kidney. In conclusion, mice harboring a mutation in TBL1XR1 display minor changes in cellular TH metabolism and action. TH transport via MCT8 might be affected as the expression is increased in WAT and kidney. The mechanisms involved need to be clarified.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Thyroid hormone regulation of metabolism.

          Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.
            • Record: found
            • Abstract: found
            • Article: not found

            Thyroid hormone receptors and resistance to thyroid hormone disorders.

            Thyroid hormone action is predominantly mediated by thyroid hormone receptors (THRs), which are encoded by the thyroid hormone receptor α (THRA) and thyroid hormone receptor β (THRB) genes. Patients with mutations in THRB present with resistance to thyroid hormone β (RTHβ), which is a disorder characterized by elevated levels of thyroid hormone, normal or elevated levels of TSH and goitre. Mechanistic insights about the contributions of THRβ to various processes, including colour vision, development of the cochlea and the cerebellum, and normal functioning of the adult liver and heart, have been obtained by either introducing human THRB mutations into mice or by deletion of the mouse Thrb gene. The introduction of the same mutations that mimic human THRβ alterations into the mouse Thra and Thrb genes resulted in distinct phenotypes, which suggests that THRA and THRB might have non-overlapping functions in human physiology. These studies also suggested that THRA mutations might not be lethal. Seven patients with mutations in THRα have since been described. These patients have RTHα and presented with major abnormalities in growth and gastrointestinal function. The hypothalamic-pituitary-thyroid axis in these individuals is minimally affected, which suggests that the central T3 feedback loop is not impaired in patients with RTHα, in stark contrast to patients with RTHβ.
              • Record: found
              • Abstract: found
              • Article: not found

              A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors.

              The mechanisms that control the precisely regulated switch from gene repression to gene activation represent a central question in mammalian development. Here, we report that transcriptional activation mediated by liganded nuclear receptors unexpectedly requires the actions of two highly related F box/WD-40-containing factors, TBL1 and TBLR1, initially identified as components of an N-CoR corepressor complex. TBL1/TBLR1 serve as specific adaptors for the recruitment of the ubiquitin conjugating/19S proteasome complex, with TBLR1 selectively serving to mediate a required exchange of the nuclear receptor corepressors, N-CoR and SMRT, for coactivators upon ligand binding. Tbl1 gene deletion in embryonic stem cells severely impairs PPARgamma-induced adipogenic differentiation, indicating that TBL1 function is also biologically indispensable for specific nuclear receptor-mediated gene activation events. The role of TBLR1 and TBL1 in cofactor exchange appears to also operate for c-Jun and NFkappaB and is therefore likely to be prototypic of similar mechanisms for other signal-dependent transcription factors.

                Author and article information

                Journal
                Eur Thyroid J
                Eur Thyroid J
                ETJ
                European Thyroid Journal
                Bioscientifica Ltd (Bristol )
                2235-0640
                2235-0802
                17 July 2023
                17 July 2023
                01 October 2023
                : 12
                : 5
                : e230077
                Affiliations
                [1 ]Department of Laboratory Medicine , Endocrine Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
                [2 ]Amsterdam Gastroenterology , Endocrinology & Metabolism (AGEM) Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
                [3 ]Department of Pediatric Endocrinology , Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
                [4 ]Department of Pediatrics , Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
                [5 ]Department of Endocrinology , Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
                Author notes
                Correspondence should be addressed to A Boelen: a.boelen@ 123456amsterdamumc.nl
                Author information
                http://orcid.org/0000-0001-6466-8497
                http://orcid.org/0000-0002-4994-2918
                Article
                ETJ-23-0077
                10.1530/ETJ-23-0077
                10448563
                37458724
                0c5f9924-0aa0-4d90-a68a-144edd0636c8
                © the author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 18 April 2023
                : 17 July 2023
                Categories
                Research

                thyroid hormone,tbl1xr1,co-repressor complex,thyroid hormone action

                Comments

                Comment on this article

                Related Documents Log