68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A female’s reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female’s preference for important nutrients, thereby ensuring optimal conditions for her growing progeny.

          Abstract

          During pregnancy, women frequently report that their food preferences change—sometimes dramatically. This study unravels a mechanism that changes a mated female’s perception of odors and tastes and thereby adapts her food choices to her reproductive state.

          Author Summary

          Food choices often correlate with nutritional needs or physiological states of an animal. For instance, during pregnancy, women frequently report that their food preferences change—sometimes dramatically. In part, this change in preference is brought about by a change in the perception of smells and tastes. Research has shown that female insects also change their food and egg-laying site preferences depending on their reproductive state. However, the mechanisms that trigger these changes are not understood in either mammals or insects. We have unraveled a mechanism that changes a mated female’s perception of odors and tastes and thereby adapts her choices to her reproductive state. Using the model fly Drosophila melanogaster, we show that mating increases females’ interest in sources of specific beneficial nutrients: polyamines such as spermine and putrescine. Polyamine levels in the body are maintained by diet, microorganisms in the gut, and own synthesis. Increased levels are required during pregnancy and reproduction. Indeed, mated females were more attracted to the taste and smell of polyamines than virgins were. We found that this behavioral modulation is regulated through a secreted peptide and its receptor, whose expression rises markedly in sensory organs upon mating. This signal appears to change the intensity of how polyamine taste or smell information reaches the brain and ultimately elicits a choice. Given that odor and taste processing in mammals and insects are similar, our findings in flies can lead to a better understanding of how dynamic physiological states affect our perception of the environment and lead us to adapt our choices of food and other relevant decisions.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular architecture of smell and taste in Drosophila.

          The chemical senses-smell and taste-allow animals to evaluate and distinguish valuable food resources from dangerous substances in the environment. The central mechanisms by which the brain recognizes and discriminates attractive and repulsive odorants and tastants, and makes behavioral decisions accordingly, are not well understood in any organism. Recent molecular and neuroanatomical advances in Drosophila have produced a nearly complete picture of the peripheral neuroanatomy and function of smell and taste in this insect. Neurophysiological experiments have begun to provide insight into the mechanisms by which these animals process chemosensory cues. Given the considerable anatomical and functional homology in smell and taste pathways in all higher animals, experimental approaches in Drosophila will likely provide broad insights into the problem of sensory coding. Here we provide a critical review of the recent literature in this field and comment on likely future directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems.

            To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A receptor that mediates the post-mating switch in Drosophila reproductive behaviour.

              Mating in many species induces a dramatic switch in female reproductive behaviour. In most insects, this switch is triggered by factors present in the male's seminal fluid. How these factors exert such profound effects in females is unknown. Here we identify a receptor for the Drosophila melanogaster sex peptide (SP, also known as Acp70A), the primary trigger of post-mating responses in this species. Females that lack the sex peptide receptor (SPR, also known as CG16752), either entirely or only in the nervous system, fail to respond to SP and continue to show virgin behaviours even after mating. SPR is expressed in the female's reproductive tract and central nervous system. The behavioural functions of SPR map to the subset of neurons that also express the fruitless gene, a key determinant of sex-specific reproductive behaviour. SPR is highly conserved across insects, opening up the prospect of new strategies to control the reproductive and host-seeking behaviours of agricultural pests and human disease vectors.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, CA USA )
                1544-9173
                1545-7885
                4 May 2016
                May 2016
                19 May 2016
                4 May 2016
                : 14
                : 5
                : e1002455
                Affiliations
                [001]Max-Planck Institute of Neurobiology, Sensory Neurogenetics Research Group, Martinsried, Germany
                Vlaams Instituut voor Biotechnologie and Katholieke Universiteit Leuven, BELGIUM
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ICGK AH HKÜ. Performed the experiments: ICGK AH LFL HKÜ MZ. Analyzed the data: ICGK AH LFL HKÜ MZ. Contributed reagents/materials/analysis tools: ICGK AH LFL HKÜ MZ. Wrote the paper: ICGK.

                Article
                PBIOLOGY-D-15-03223
                10.1371/journal.pbio.1002455
                4856363
                27145127
                0c6d6678-944d-4358-9f6b-a27be8ea88fa
                © 2016 Hussain et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 November 2015
                : 7 April 2016
                Page count
                Figures: 7, Tables: 0, Pages: 28
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100004189, Max-Planck-Gesellschaft;
                Funded by: funder-id http://dx.doi.org/10.13039/501100000781, European Research Council;
                Award ID: 637472
                Funded by: funder-id http://dx.doi.org/10.13039/100008349, Boehringer Ingelheim;
                Award ID: Exploration Grant
                Funded by: funder-id http://dx.doi.org/10.13039/501100003043, EMBO;
                Award ID: EMBO Young Investigator award
                This study was generously supported by a Boehringer Ingelheim Exploration Grant to ICGK ( http://www.boehringer-ingelheim-stiftung.de/de/was-wir-foerdern/exploration-grants.html), the Max Planck Society to ICGK ( www.mpg.de), an ERC starting grant, Grant number: 637472 to ICGK, ( https://erc.europa.eu/funding-and-grants/funding-schemes/starting-grants), and the EMBO Young Investigator award to ICGK ( www.embo.org) The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Afferent Neurons
                Olfactory Receptor Neurons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Afferent Neurons
                Olfactory Receptor Neurons
                Biology and Life Sciences
                Physiology
                Reproductive Physiology
                Oviposition
                Medicine and Health Sciences
                Physiology
                Reproductive Physiology
                Oviposition
                Biology and Life Sciences
                Neuroscience
                Sensory Perception
                Taste
                Biology and Life Sciences
                Psychology
                Sensory Perception
                Taste
                Social Sciences
                Psychology
                Sensory Perception
                Taste
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognition
                Decision Making
                Biology and Life Sciences
                Neuroscience
                Sensory Perception
                Biology and Life Sciences
                Psychology
                Sensory Perception
                Social Sciences
                Psychology
                Sensory Perception
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Sensory Neurons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Sensory Neurons
                Biology and life sciences
                Genetics
                Epigenetics
                RNA interference
                Biology and life sciences
                Genetics
                Gene expression
                RNA interference
                Biology and life sciences
                Genetics
                Genetic interference
                RNA interference
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA interference
                Custom metadata
                All data are contained within the paper and/or Supporting Information.

                Life sciences
                Life sciences

                Comments

                Comment on this article