+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-term clinical outcome and phenotypic variability in hyperphosphatemic familial tumoral calcinosis and hyperphosphatemic hyperostosis syndrome caused by a novel GALNT3 mutation; case report and review of the literature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Hyperphosphatemic Familial Tumoral Calcinosis (HFTC) and Hyperphosphatemic Hyperostosis Syndrome (HHS) are associated with autosomal recessive mutations in three different genes, FGF23, GALNT3 and KL, leading to reduced levels of fibroblast growth factor 23 (FGF23) and subsequent clinical effects.


          We describe a consanguineous family with two affected siblings with HFTC and HHS caused by a novel homozygous G-to T substitution in exon 3 of GALNT3 ( c.767 G > T; p.Gly256Val), demonstrating great phenotypic variation and long asymptomatic intervals. Calcific tumors appeared at 14 years of age in the male, and the female displayed episodic diaphysitis from age 9 years. Symptoms of eye involvement were present in both from childhood, and progressed into band keratopathy in the female. Abnormal dental roots and tooth loss, as well as myalgia were present in both from their mid-twenties, while the female also had calcifications in the placenta, the iliac vessels and thyroid cartilage. New calcific tumors appeared more than 20 years after the initial episodes, delaying diagnosis and treatment until the ages of 37 and 50 years, respectively. Both siblings had elevated serum phosphate levels, inappropriately elevated tubular maximum phosphate reabsorption per unit glomerular filtration rate (TmP/GFR), reduced levels of intact FGF23 and increased levels of c-terminal FGF23. Review of all 54 previously published cases of GALNT3, FGF23, and KL associated HFTC and HHS demonstrated that more subjects than previously recognized have a combined phenotype.


          We have described HFTC and HHS in a consanguineous Caucasian family with a novel GALNT3 mutation, demonstrating new phenotypic features and significant variability in the natural course of the disease. A review of the literature, show that more subjects than previously recognized have a combined phenotype of HFTC and HHS. HHS and HFTC are two distinct phenotypes in a spectrum of GALNT3 mutation related calcification disorders, where the additional factors determining the phenotypic expression, are yet to be clarified.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12863-014-0098-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 64

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis.

          Familial tumoral calcinosis (FTC; OMIM 211900) is a severe autosomal recessive metabolic disorder that manifests with hyperphosphatemia and massive calcium deposits in the skin and subcutaneous tissues. Using linkage analysis, we mapped the gene underlying FTC to 2q24-q31. This region includes the gene GALNT3, which encodes a glycosyltransferase responsible for initiating mucin-type O-glycosylation. Sequence analysis of GALNT3 identified biallelic deleterious mutations in all individuals with FTC, suggesting that defective post-translational modification underlies the disease.
            • Record: found
            • Abstract: found
            • Article: not found

            Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation.

            Mutations in the gene encoding the glycosyltransferase polypeptide GalNAc-T3, which is involved in initiation of O-glycosylation, were recently identified as a cause of the rare autosomal recessive metabolic disorder familial tumoral calcinosis (OMIM 211900). Familial tumoral calcinosis is associated with hyperphosphatemia and massive ectopic calcifications. Here, we demonstrate that the secretion of the phosphaturic factor fibroblast growth factor 23 (FGF23) requires O-glycosylation, and that GalNAc-T3 selectively directs O-glycosylation in a subtilisin-like proprotein convertase recognition sequence motif, which blocks processing of FGF23. The study suggests a novel posttranslational regulatory model of FGF23 involving competing O-glycosylation and protease processing to produce intact FGF23.
              • Record: found
              • Abstract: found
              • Article: not found

              An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia.

              Familial tumoral calcinosis (FTC) is an autosomal recessive disorder characterized by ectopic calcifications and elevated serum phosphate levels. Recently, mutations in the GALNT3 gene have been described to cause FTC. The FTC phenotype is regarded as the metabolic mirror image of hypophosphatemic conditions, where causal mutations are known in genes FGF23 or PHEX. We investigated an individual with FTC who was negative for GALNT3 mutations. Sequencing revealed a homozygous missense mutation in the FGF23 gene (p.S71G) at an amino acid position which is conserved from fish to man. Wild-type FGF23 is secreted as intact protein and processed N-terminal and C-terminal fragments. Expression of the mutated protein in HEK293 cells showed that only the C-terminal fragment is secreted, whereas the intact protein is retained in the Golgi complex. In addition, determination of circulating FGF23 in the affected individual showed a marked increase in the C-terminal fragment. These results suggest that the FGF23 function is decreased by absent or extremely reduced secretion of intact FGF23. We conclude that FGF23 mutations in hypophosphatemic rickets and FTC have opposite effects on phosphate homeostasis.

                Author and article information

                BMC Genet
                BMC Genet
                BMC Genetics
                BioMed Central (London )
                24 September 2014
                24 September 2014
                : 15
                : 1
                [ ]Department of Clinical Science, University of Bergen, Bergen, Norway
                [ ]Center of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
                [ ]Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
                © Rafaelsen et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Research Article
                Custom metadata
                © The Author(s) 2014


                Comment on this article