33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Colonic mucosa-associated Escherichia coli are increased in Crohn's disease (CD) and colorectal cancer (CRC). They variously haemagglutinate, invade epithelial cell lines, replicate within macrophages, translocate across M (microfold) cells and damage DNA . We investigated genes responsible for these effects and their co-association in colonic mucosal isolates.

          Design

          A fosmid library yielding 968 clones was prepared in E coli EPI300-T1 using DNA from a haemagglutinating CRC isolate, and resulting haemagglutinating clones were 454-pyrosequenced. PCR screening was performed on 281 colonic E coli isolates from inflammatory bowel disease (IBD) (35 patients), CRC (21) and controls (24; sporadic polyps or irritable bowel syndrome).

          Results

          454-Pyrosequencing of fosmids from the haemagglutinating clones (n=8) identified the afimbrial adhesin afa- 1 operon. Transfection of afa- 1 into E coli K-12 predictably conferred diffuse adherence plus invasion of HEp-2 and I-407 epithelial cells, and upregulation of vascular endothelial growth factor. E coli expressing afaC were common in CRC (14/21, p=0.0009) and CD (9/14, p=0.005) but not ulcerative colitis (UC; 8/21) compared with controls (4/24). E coli expressing both afaC and lpfA (relevant to M-cell translocation) were common in CD (8/14, p=0.0019) and CRC (14/21, p=0.0001), but not UC (6/21) compared with controls (2/24). E coli expressing both afaC and pks (genotoxic) were common in CRC (11/21, p=0.0015) and UC (8/21, p=0.022), but not CD (4/14) compared with controls (2/24). All isolates expressed dsbA and htrA relevant to intra-macrophage replication, and 242/281 expressed fimH encoding type-1 fimbrial adhesin.

          Conclusions

          IBD and CRC commonly have colonic mucosal E coli that express genes that confer properties relevant to pathogenesis including M-cell translocation, angiogenesis and genotoxicity.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response.

            The mucosal immune system forms the largest part of the entire immune system, containing about three-quarters of all lymphocytes and producing grams of secretory IgA daily to protect the mucosal surface from pathogens. To evoke the mucosal immune response, antigens on the mucosal surface must be transported across the epithelial barrier into organized lymphoid structures such as Peyer's patches. This function, called antigen transcytosis, is mediated by specialized epithelial M cells. The molecular mechanisms promoting this antigen uptake, however, are largely unknown. Here we report that glycoprotein 2 (GP2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for mucosal antigens. Recombinant GP2 protein selectively bound a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane. Consistently, these bacteria were colocalized with endogenous GP2 on the apical plasma membrane as well as in cytoplasmic vesicles in M cells. Moreover, deficiency of bacterial FimH or host GP2 led to defects in transcytosis of type-I-piliated bacteria through M cells, resulting in an attenuation of antigen-specific immune responses in Peyer's patches. GP2 is therefore a previously unrecognized transcytotic receptor on M cells for type-I-piliated bacteria and is a prerequisite for the mucosal immune response to these bacteria. Given that M cells are considered a promising target for oral vaccination against various infectious diseases, the GP2-dependent transcytotic pathway could provide a new target for the development of M-cell-targeted mucosal vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer.

              Altered mucosal glycosylation in inflammatory bowel disease and colon cancer could affect mucosal bacterial adherence. This study aimed to quantify and characterize mucosa-associated and intramucosal bacteria, particularly Escherichia coli, in these conditions. Mucosa-associated bacteria were isolated, after dithiothreitol mucolysis, from biopsy samples obtained at colonoscopy (Crohn's disease, n = 14 patients; ulcerative colitis, n = 21; noninflamed controls, n = 24) and at surgical resection (colon cancer, n = 21). Intramucosal bacteria were grown after gentamicin treatment followed by hypotonic lysis. Mucosa-associated and intramucosal bacteria were cultured more commonly in Crohn's disease (79%, P = 0.03; and 71%, P < 0.01, respectively), but not ulcerative colitis (38% and 48%), than in noninflamed controls (42% and 29%) and were commonly cultured from colon cancers (71% and 57%). Mucosa-associated E. coli, which accounted for 53% of isolates, were more common in Crohn's disease (6/14; 43%) than in noninflamed controls (4/24, 17%), as also were intramucosal E. coli: Crohn's disease, 29%; controls, 9%. E. coli expressed hemagglutinins in 39% of Crohn's cases and 38% of cancers but only 4% of controls, and this correlated (P = 0.01) with adherence to the I407 and HT29 cell lines. Invasion was cell-line dependent. E. coli, including nonadherent isolates, induced interleukin-8 release from the cell lines. E. coli adhesins showed no blood group specificity, excepting 1 cancer isolate (HM44) with specificity for the Thomsen-Friedenreich antigen, but they could be blocked by soluble plantain fiber. These studies support a central role for mucosally adherent bacteria in the pathogenesis of Crohn's disease and colon cancer. Soluble plant fibers that inhibit their adherence have therapeutic potential.
                Bookmark

                Author and article information

                Journal
                Gut
                Gut
                gutjnl
                gut
                Gut
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0017-5749
                1468-3288
                May 2014
                11 July 2013
                : 63
                : 5
                : 761-770
                Affiliations
                [1 ]Department of Gastroenterology, Institute of Translational Medicine , Liverpool, UK
                [2 ]Alimentary Pharmabiotic Centre, University College Cork , Cork, Ireland
                [3 ]School of Biosciences, Cardiff University , Cardiff, UK
                [4 ]Departments of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health , Liverpool, UK
                [5 ]Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool , Liverpool, UK
                Author notes
                [Correspondence to ] Dr Barry Campbell, Department of Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK; bjcampbl@ 123456liv.ac.uk
                Article
                gutjnl-2013-304739
                10.1136/gutjnl-2013-304739
                3995253
                23846483
                0c7b8485-84d6-4db6-a214-9b7d13feacd6
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

                History
                : 20 February 2013
                : 18 June 2013
                : 19 June 2013
                Categories
                1506
                Inflammatory Bowel Disease
                Original article
                Custom metadata
                unlocked

                Gastroenterology & Hepatology
                bacterial adherence,bacterial interactions,bacterial pathogenesis,gut inflammation,e. coli

                Comments

                Comment on this article