12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Target Analysis and Retrospective Screening of Multiple Mycotoxins in Pet Food Using UHPLC-Q-Orbitrap HRMS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comprehensive strategy combining a quantitative method for 28 mycotoxins and a post-target screening for other 245 fungal and bacterial metabolites in dry pet food samples were developed using an acetonitrile-based extraction and an ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) method. The proposed method showed satisfactory validation results according to Commission Decision 2002/657/EC. Average recoveries from 72 to 108% were obtained for all studied mycotoxins, and the intra-/inter-day precision were below 9 and 14%, respectively. Results showed mycotoxin contamination in 99% of pet food samples ( n = 89) at concentrations of up to hundreds µg/kg, with emerging Fusarium mycotoxins being the most commonly detected mycotoxins. All positive samples showed co-occurrence of mycotoxins with the simultaneous presence of up to 16 analytes per sample. In the retrospective screening, up to 54 fungal metabolites were tentatively identified being cyclopiazonic acid, paspalitrem A, fusaric acid, and macrosporin, the most commonly detected analytes.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Current Situation of Mycotoxin Contamination and Co-occurrence in Animal Feed—Focus on Europe

          Mycotoxins are secondary metabolites produced by fungi especially those belonging to the genus Aspergillus, Penicillum and Fusarium. Mycotoxin contamination can occur in all agricultural commodities in the field and/or during storage, if conditions are favourable to fungal growth. Regarding animal feed, five mycotoxins (aflatoxins, deoxynivalenol, zearalenone, fumonisins and ochratoxin A) are covered by EU legislation (regulation or recommendation). Transgressions of these limits are rarely observed in official monitoring programs. However, low level contamination by Fusarium toxins is very common (e.g., deoxynivalenol (DON) is typically found in more than 50% of the samples) and co-contamination is frequently observed. Multi-mycotoxin studies reported 75%–100% of the samples to contain more than one mycotoxin which could impact animal health at already low doses. Co-occurrence of mycotoxins is likely to arise for at least three different reasons (i) most fungi are able to simultaneously produce a number of mycotoxins, (ii) commodities can be contaminated by several fungi, and (iii) completed feed is made from various commodities. In the present paper, we reviewed the data published since 2004 concerning the contamination of animal feed with single or combinations of mycotoxins and highlighted the occurrence of these co-contaminations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients

            The development of liquid chromatography-mass spectrometry (LC-MS)/mass spectrometry (MS) methods for the simultaneous detection and quantification of a broad spectrum of mycotoxins has facilitated the screening of a larger number of samples for contamination with a wide array of less well-known “emerging” mycotoxins and other metabolites. In this study, 83 samples of feed and feed raw materials were analysed. All of them were found to contain seven to 69 metabolites. The total number of detected metabolites amounts to 139. Fusarium mycotoxins were most common, but a number of Alternaria toxins also occurred very often. Furthermore, two so-called masked mycotoxins (i.e., mycotoxin conjugates), namely deoxynivalenol-3-glucoside (75% positives) and zearalenone-4-sulfate (49% positives), were frequently detected. Although the observed median concentrations of the individual analytes were generally in the low μg/kg range, evaluating the toxicological potential of a given sample is difficult. Toxicity data on less well-known mycotoxins and other detected metabolites are notoriously scarce, as an overview on the available information on the most commonly detected metabolites shows. Besides, the possible synergistic effects of co-occurring substances have to be considered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method.

              In this study an LC-MS/MS multitoxin method covering a total of 247 fungal and bacterial metabolites was applied to the analysis of different foods and feedstuffs from Burkina Faso and Mozambique. Overall, 63 metabolites were determined in 122 samples of mainly maize and groundnuts and a few samples of sorghum, millet, rice, wheat, soy, dried fruits, other processed foods and animal feeds. Aflatoxin B(1) was observed more frequently in maize (Burkina Faso, 50% incidence, median = 23.6 μg/kg; Mozambique, 46% incidence, median = 69.9 μg/kg) than in groundnuts (Burkina Faso, 22% incidence, median = 10.5 μg/kg; Mozambique, 14% incidence, median = 3.4 μg/kg). Fumonisin B(1) concentrations in maize were higher in Mozambique (92% incidence, median = 869 μg/kg) than in Burkina Faso (81% incidence, median = 269 μg/kg). In addition, ochratoxin A, zearalenone, deoxynivalenol, nivalenol, and other less reported mycotoxins such as citrinin, alternariol, cyclopiazonic acid, sterigmatocystin, moniliformin, beauvericin, and enniatins were detected. Up to 28 toxic fungal metabolites were quantitated in a single sample, emphasizing the great variety of mycotoxin coexposure. Most mycotoxins have not been reported before in either country.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                24 July 2019
                August 2019
                : 11
                : 8
                : 434
                Affiliations
                [1 ]Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
                [2 ]Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
                [3 ]Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
                Author notes
                [* ]Correspondence: yelko.rodriguez@ 123456uv.es ; Tel.: +34-96-354-4117; Fax: +34-96-354-4954
                Author information
                https://orcid.org/0000-0003-3070-5389
                https://orcid.org/0000-0002-8365-9032
                https://orcid.org/0000-0002-6421-218X
                Article
                toxins-11-00434
                10.3390/toxins11080434
                6723864
                31344880
                0c8fe196-29b7-4ae7-83cf-d5f19607a82e
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 June 2019
                : 22 July 2019
                Categories
                Article

                Molecular medicine
                mycotoxins,monitoring,pet food,hrms-orbitrap,co-occurrence,retrospective screening
                Molecular medicine
                mycotoxins, monitoring, pet food, hrms-orbitrap, co-occurrence, retrospective screening

                Comments

                Comment on this article