27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microarray-based profiling of the involvement of two DNA methyltransferases (CMT3 and DRM), a histone H3 lysine-9 methyltransferase (KYP) and an Argonaute-related siRNA silencing component (AGO4) in methylating target loci in Arabidopsis reveals that transposable elements are the targets of both DNA methylation and histone H3K9 methylation pathways, irrespective of element type and position.

          Abstract

          Background

          DNA methylation occurs at preferred sites in eukaryotes. In Arabidopsis, DNA cytosine methylation is maintained by three subfamilies of methyltransferases with distinct substrate specificities and different modes of action. Targeting of cytosine methylation at selected loci has been found to sometimes involve histone H3 methylation and small interfering (si)RNAs. However, the relationship between different cytosine methylation pathways and their preferred targets is not known.

          Results

          We used a microarray-based profiling method to explore the involvement of Arabidopsis CMT3 and DRM DNA methyltransferases, a histone H3 lysine-9 methyltransferase (KYP) and an Argonaute-related siRNA silencing component (AGO4) in methylating target loci. We found that KYP targets are also CMT3 targets, suggesting that histone methylation maintains CNG methylation genome-wide. CMT3 and KYP targets show similar proximal distributions that correspond to the overall distribution of transposable elements of all types, whereas DRM targets are distributed more distally along the chromosome. We find an inverse relationship between element size and loss of methylation in ago4 and drm mutants.

          Conclusion

          We conclude that the targets of both DNA methylation and histone H3K9 methylation pathways are transposable elements genome-wide, irrespective of element type and position. Our findings also suggest that RNA-directed DNA methylation is required to silence isolated elements that may be too small to be maintained in a silent state by a chromatin-based mechanism alone. Thus, parallel pathways would be needed to maintain silencing of transposable elements.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          Repbase update: a database and an electronic journal of repetitive elements.

          J Jurka (2000)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation.

            Epigenetic silenced alleles of the Arabidopsis SUPERMAN locus (the clark kent alleles) are associated with dense hypermethylation at noncanonical cytosines (CpXpG and asymmetric sites, where X = A, T, C, or G). A genetic screen for suppressors of a hypermethylated clark kent mutant identified nine loss-of-function alleles of CHROMOMETHYLASE3 (CMT3), a novel cytosine methyltransferase homolog. These cmt3 mutants display a wild-type morphology but exhibit decreased CpXpG methylation of the SUP gene and of other sequences throughout the genome. They also show reactivated expression of endogenous retrotransposon sequences. These results show that a non-CpG DNA methyltransferase is responsible for maintaining epigenetic gene silencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elucidation of the small RNA component of the transcriptome.

              Small RNAs play important regulatory roles in most eukaryotes, but only a small proportion of these molecules have been identified. We sequenced more than two million small RNAs from seedlings and the inflorescence of the model plant Arabidopsis thaliana. Known and new microRNAs (miRNAs) were among the most abundant of the nonredundant set of more than 75,000 sequences, whereas more than half represented lower abundance small interfering RNAs (siRNAs) that match repetitive sequences, intergenic regions, and genes. Individual or clusters of highly regulated small RNAs were readily observed. Targets of antisense RNA or miRNA did not appear to be preferentially associated with siRNAs. Many genomic regions previously considered featureless were found to be sites of numerous small RNAs.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2005
                19 October 2005
                : 6
                : 11
                : R90
                Affiliations
                [1 ]Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
                [2 ]Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
                [3 ]Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85 Sweden
                [4 ]Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
                Article
                gb-2005-6-11-r90
                10.1186/gb-2005-6-11-r90
                1297646
                16277745
                0c936dfb-5bec-48a0-886e-9ec2dcf789ef
                Copyright © 2005 Tran et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 July 2005
                : 26 August 2005
                : 21 September 2005
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article