57
views
0
recommends
+1 Recommend
0 collections
    16
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical review: Continuous and simplified electroencephalography to monitor brain recovery after cardiac arrest

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There has been a dramatic change in hospital care of cardiac arrest survivors in recent years, including the use of target temperature management (hypothermia). Clinical signs of recovery or deterioration, which previously could be observed, are now concealed by sedation, analgesia, and muscle paralysis. Seizures are common after cardiac arrest, but few centers can offer high-quality electroencephalography (EEG) monitoring around the clock. This is due primarily to its complexity and lack of resources but also to uncertainty regarding the clinical value of monitoring EEG and of treating post-ischemic electrographic seizures. Thanks to technical advances in recent years, EEG monitoring has become more available. Large amounts of EEG data can be linked within a hospital or between neighboring hospitals for expert opinion. Continuous EEG (cEEG) monitoring provides dynamic information and can be used to assess the evolution of EEG patterns and to detect seizures. cEEG can be made more simple by reducing the number of electrodes and by adding trend analysis to the original EEG curves. In our version of simplified cEEG, we combine a reduced montage, displaying two channels of the original EEG, with amplitude-integrated EEG trend curves (aEEG). This is a convenient method to monitor cerebral function in comatose patients after cardiac arrest but has yet to be validated against the gold standard, a multichannel cEEG. We recently proposed a simplified system for interpreting EEG rhythms after cardiac arrest, defining four major EEG patterns. In this topical review, we will discuss cEEG to monitor brain function after cardiac arrest in general and how a simplified cEEG, with a reduced number of electrodes and trend analysis, may facilitate and improve care.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants.

          The background pattern in single channel amplitude integrated EEG recordings (aEEG) was recorded in 47 infants within the first six hours after birth to see if this could predict outcome after birth asphyxia. The aEEG background pattern during the first six hours of life was continuous and of normal voltage in 26 infants. All these infants survived; 25 were healthy, one had delayed psychomotor development. A continuous but extremely low voltage pattern was present in two infants, both of whom survived with severe handicap. Five infants had flat (mainly isoelectric) tracings during the first six hours of life; four died in the neonatal period, and one survived with severe neurological handicap. Burst-suppression pattern was identified in 14 infants, of whom five died, six survived with severe handicap, and three were healthy at follow up. The type of background pattern recorded within the first six postnatal hours in the aEEG tracings predicted outcome correctly in 43 of 47 (91.5%) infants. Use of aEEG monitoring can predict outcome, with a high degree of accuracy, after birth asphyxia, within the first six hours after birth. The predictive value of a suppression-burst pattern was, however, somewhat lower than the other background patterns. The aEEG seems to be a feasible technique for identifying infants at high risk of subsequent brain damage who might benefit from interventionist treatment after asphyxia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy.

            To determine if posttraumatic nonconvulsive electrographic seizures result in long-term brain atrophy. Prospective continuous EEG (cEEG) monitoring was done in 140 patients with moderate to severe traumatic brain injury (TBI) and in-depth study of 16 selected patients was done using serial volumetric MRI acutely and at 6 months after TBI. Fluorodeoxyglucose PET was done in the acute stage in 14/16 patients. These data were retrospectively analyzed after collection of data for 7 years. cEEG detected seizures in 32/140 (23%) of the entire cohort. In the selected imaging subgroup, 6 patients with seizures were compared with a cohort of 10 age- and GCS-matched patients with TBI without seizures. In this subgroup, the seizures were repetitive and constituted status epilepticus in 4/6 patients. Patients with seizures had greater hippocampal atrophy as compared to those without seizures (21 +/- 9 vs 12 +/- 6%, p = 0.017). Hippocampi ipsilateral to the electrographic seizure focus demonstrated a greater degree of volumetric atrophy as compared with nonseizure hippocampi (28 +/- 5 vs 13 +/- 9%, p = 0.007). A single patient had an ictal PET scan which demonstrated increased hippocampal glucose uptake. Acute posttraumatic nonconvulsive seizures occur frequently after TBI and, in a selected subgroup, appear to be associated with disproportionate long-term hippocampal atrophy. These data suggest anatomic damage is potentially elicited by nonconvulsive seizures in the acute postinjury setting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early EEG correlates of neuronal injury after brain anoxia.

              EEG and serum neuron-specific enolase (NSE) are used for outcome prognostication in patients with postanoxic coma; however, it is unclear if EEG abnormalities reflect transient neuronal dysfunction or neuronal death. To assess this question, EEG abnormalities were correlated with NSE. Moreover, NSE cutoff values and hypothermic EEG features related with poor outcome were explored. In a prospective cohort of 61 adults treated with therapeutic hypothermia (TH) after cardiac arrest (CA), multichannel EEG recorded during TH was assessed for background reactivity and continuity, presence of epileptiform transients, and correlated with serum NSE collected at 24-48 hours after CA. Demographic, clinical, and functional outcome data (at 3 months) were collected and integrated in the analyses. In-hospital mortality was 41%, and 82% of survivors had good neurologic outcome at 3 months. Serum NSE and EEG findings were strongly correlated (Spearman rho = 0.45; p 33 μg/L. The correlation between EEG during TH and serum NSE levels supports the hypothesis that early EEG alterations reflect permanent neuronal damage. Furthermore, this study confirms that absent EEG background reactivity and presence of epileptiform transients are robust predictors of poor outcome after CA, and that survival with good neurologic recovery is possible despite serum NSE levels> 33 μg/L. This underscores the importance of multimodal assessments in this setting.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2013
                23 July 2013
                23 July 2014
                : 17
                : 4
                : 233
                Affiliations
                [1 ]Department of Intensive and Perioperative Care, Skåne University Hospital, Getingevägen, 22185 Lund, Sweden
                [2 ]Department of Clinical Sciences, Lund University, Getingevägen, 22185 Lund, Sweden
                [3 ]Department of Neurophysiology, Skåne University Hospital, Getingevägen, 22185 Lund, Sweden
                [4 ]Department of Anaesthesiology and Intensive Care, Helsingborg Hospital, Södra Vallgatan 5, 25437 Helsingborg, Sweden
                [5 ]Department of Neurology, Skåne University Hospital, Getingevägen, 22185 Lund, Sweden
                Article
                cc12699
                10.1186/cc12699
                4056658
                23876221
                0c97950b-af04-40f2-9d25-393996d7175f
                Copyright © 2013 BioMed Central Ltd
                History
                Categories
                Review

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article