64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Unexpected Novel Relational Links Uncovered by Extensive Developmental Profiling of Nuclear Receptor Expression

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nuclear receptors (NRs) are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes) using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily.

          Author Summary

          NRs are key molecules controlling development, metabolism, and reproduction in metazoans. Since NRs are implicated in many human diseases such as cancer, metabolic syndrome, and hormone resistance, they are important pharmaceutical targets and are under intense scrutiny to better understand their biological functions. In the present study, we determined the expression patterns of all NR genes as well as their main transcriptional coregulators during zebrafish development. We used zebrafish because the transparency of its embryo allows us to perform whole-mount in situ hybridization from early development to late organogenesis. This complete developmental profiling offers an unprecedented view of NR expression during embryogenesis, uncovering their potential function during central nervous system and retina formation. We observed that in contrast to NR genes, only a few coregulators exhibit a restricted expression pattern, suggesting that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Lastly, by evolutionary analysis of expression pattern divergence of duplicated genes, we observed that neofunctionalization occurs at the levels of both protein sequence and mRNA expression patterns. Taken together, our data provide the starting point for functional analysis of an entire gene family during development and call for the study of the intersection between metabolism and development.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          The probability of duplicate gene preservation by subfunctionalization.

          It has often been argued that gene-duplication events are most commonly followed by a mutational event that silences one member of the pair, while on rare occasions both members of the pair are preserved as one acquires a mutation with a beneficial function and the other retains the original function. However, empirical evidence from genome duplication events suggests that gene duplicates are preserved in genomes far more commonly and for periods far in excess of the expectations under this model, and whereas some gene duplicates clearly evolve new functions, there is little evidence that this is the most common mechanism of duplicate-gene preservation. An alternative hypothesis is that gene duplicates are frequently preserved by subfunctionalization, whereby both members of a pair experience degenerative mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We consider the ways in which the probability of duplicate-gene preservation by such complementary mutations is modified by aspects of gene structure, degree of linkage, mutation rates and effects, and population size. Even if most mutations cause complete loss-of-subfunction, the probability of duplicate-gene preservation can be appreciable if the long-term effective population size is on the order of 10(5) or smaller, especially if there are more than two independently mutable subfunctions per locus. Even a moderate incidence of partial loss-of-function mutations greatly elevates the probability of preservation. The model proposed herein leads to quantitative predictions that are consistent with observations on the frequency of long-term duplicate gene preservation and with observations that indicate that a common fate of the members of duplicate-gene pairs is the partitioning of tissue-specific patterns of expression of the ancestral gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny.

            SEAVIEW and PHYLO_WIN are two graphic tools for X Windows-Unix computers dedicated to sequence alignment and molecular phylogenetics. SEAVIEW is a sequence alignment editor allowing manual or automatic alignment through an interface with CLUSTALW program. Alignment of large sequences with extensive length differences is made easier by a dot-plot-based routine. The PHYLO_WIN program allows phylogenetic tree building according to most usual methods (neighbor joining with numerous distance estimates, maximum parsimony, maximum likelihood), and a bootstrap analysis with any of them. Reconstructed trees can be drawn, edited, printed, stored, evaluated according to numerous criteria. Taxonomic species groups and sets of conserved regions can be defined by mouse and stored into sequence files, thus avoiding multiple data files. Both tools are entirely mouse driven. On-line help makes them easy to use. They are freely available by anonymous ftp at biom3.univ-lyon1.fr/pub/ mol_phylogeny or http:@acnuc.univ-lyon1.fr/, or by e-mail to galtier@biomserv.univ-lyon1.fr.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network.

              In multicellular organisms, the ability to regulate reproduction, development, and nutrient utilization coincided with the evolution of nuclear receptors (NRs), transcription factors that utilize lipophilic ligands to mediate their function. Studying the expression profile of NRs offers a simple, powerful way to obtain highly relational information about their physiologic functions as individual proteins and as a superfamily. We surveyed the expression of all 49 mouse NR mRNAs in 39 tissues, representing diverse anatomical systems. The resulting data set uncovers several NR clades whose patterns of expression indicate their ability to coordinate the transcriptional programs necessary to affect distinct physiologic pathways. Remarkably, this regulatory network divides along the following two physiologic paradigms: (1) reproduction, development, and growth and (2) nutrient uptake, metabolism, and excretion. These data reveal a hierarchical transcriptional circuitry that extends beyond individual tissues to form a meganetwork governing physiology on an organismal scale.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                plge
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2007
                9 November 2007
                : 3
                : 11
                : e188
                Affiliations
                [1 ] Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
                [2 ] Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
                [3 ] CNRS UMR 5166, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, CP32, Paris, France
                [4 ] CEMAGREF, Laboratoire d'écotoxicologie, Lyon, France
                Stanford University Medical Center, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: Vincent.Laudet@ 123456ens-lyon.fr
                Article
                07-PLGE-RA-0318R2 plge-03-11-05
                10.1371/journal.pgen.0030188
                2065881
                17997606
                0caed9a4-f21c-481a-9eaa-c4a8a89ae0fb
                Copyright: © 2007 Bertrand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 May 2007
                : 11 September 2007
                Page count
                Pages: 16
                Categories
                Research Article
                Developmental Biology
                Diabetes and Endocrinology
                Evolutionary Biology
                Genetics and Genomics
                Danio (Zebrafish)
                Vertebrates
                Custom metadata
                Bertrand S, Thisse B, Tavares R, Sachs L, Chaumot A, et al. (2007) Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet 3(11): e188. doi: 10.1371/journal.pgen.0030188

                Genetics
                Genetics

                Comments

                Comment on this article