84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes.

          Author Summary

          One of the enduring challenges facing HIV vaccine design is the remarkable rate of viral mutation and adaptation that limits the ability of the immune system to mount a lasting effective response. This rapid rate of mutation leads to extensive within- and between-host viral diversity that makes creation of a broadly reactive vaccine difficult. A first step in overcoming this challenge is to identify consistent patterns in viral adaptation. Recently, several studies have analyzed large groups of HIV-infected individuals and looked for correlations between HIV polymorphisms and the HLA class I alleles that restrict the cellular immune response. Here, we point out a limitation of previous approaches: correlations among HLA alleles and HIV codons lead to statistical confounding if not taken into consideration. In response, we develop two statistical models of evolution that explicitly represent stochastic selection pressure from multiple sources. After validating these models on synthetic data, we analyze the patterns of immune escape in a multicenter cohort of over 1000 individuals. Our results identify a dense network of interactions between HLA alleles and HIV codons, as well as among HIV codons, reflecting both a complexity and a promising consistency in the way that HIV adapts to the human immune response.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: not found
          • Article: not found

          Detecting Correlated Evolution on Phylogenies: A General Method for the Comparative Analysis of Discrete Characters

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIV evolution: CTL escape mutation and reversion after transmission.

            Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors.

              A unique cohort of HIV-1-infected long term nonprogressors (LTNP) with normal CD4(+) T cell counts and <50 copies/ml of plasma were prospectively recruited for study. HLA typing revealed a dramatic association between the HLA B*5701 class I allele and nonprogressive infection [85% (11 of 13) vs. 9.5% (19 of 200) in progressors; P < 0. 001]. Antigen-specific CD8(+) T cells were enumerated by flow cytometric detection of intracellular IFN-gamma in response to HIV antigens and HLA B*57-gag tetramer staining. No quantitative differences in the total HIV-specific CD8(+) T cell responses were observed between B*57(+) LTNP and five B*57(+) progressors (P = 0.4). Although similar frequencies of peptide specific CD8(+) T cells were also found, the gag-specific CD8(+) T cell response in the LTNP group was highly focused on peptides previously shown to be B*57-restricted. These findings indicate that, within this phenotypically and genotypically distinct cohort, a host immune factor is highly associated with restriction of virus replication and nonprogressive disease. They also strongly suggest a mechanism of virus specific immunity that directly operates through the B*5701 molecule. Further characterization of qualitative differences in the virus-specific responses that distinguish HLA B*57(+) LTNP from progressors may ultimately define mechanisms of effective immune mediated restriction of virus replication.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                November 2008
                November 2008
                21 November 2008
                : 4
                : 11
                : e1000225
                Affiliations
                [1 ]eScience Group, Microsoft Research, Redmond, Washington, United States of America
                [2 ]Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
                [3 ]Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                [4 ]Department of Microbiology, University of Washington, Seattle, Washington, United States of America
                [5 ]Department of Paediatrics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
                [6 ]Department of Medicine, University of Washington, Seattle, Washington, United States of America
                [7 ]Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
                [8 ]B.C. Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
                [9 ]Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
                [10 ]HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
                Utrecht University, The Netherlands
                Author notes

                Conceived and designed the experiments: JMC ZLB PRH DH. Performed the experiments: JMC. Analyzed the data: JMC ZLB CJB DH. Contributed reagents/materials/analysis tools: JMC ZLB CMR PM CK JIM BDW PRH PJRG DH. Wrote the paper: JMC ZLB DH.

                Article
                08-PLCB-RA-0317R2
                10.1371/journal.pcbi.1000225
                2579584
                19023406
                0cb2ad37-3057-4a31-bbb2-5069b803c881
                Carlson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 April 2008
                : 9 October 2008
                Page count
                Pages: 23
                Categories
                Research Article
                Computational Biology/Evolutionary Modeling
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Genetics of the Immune System
                Virology/Immune Evasion
                Virology/Immunodeficiency Viruses
                Virology/Vaccines
                Virology/Virus Evolution and Symbiosis

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article