20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeted alpha therapy using a novel CD70 targeted thorium-227 conjugate in in vitro and in vivo models of renal cell carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cell surface receptor CD70 has been previously reported as a promising target for B-cell lymphomas and several solid cancers including renal cell carcinoma. We describe herein the characterization and efficacy of a novel CD70 targeted thorium-227 conjugate (CD70-TTC) comprising the combination of the three components, a CD70 targeting antibody, a chelator moiety and the short-range, high-energy alpha-emitting radionuclide thorium-227 ( 227Th). In vitro analysis demonstrated that the CD70-TTC retained binding affinity to its target and displayed potent and specific cytotoxicity compared to an isotype control-TTC. A biodistribution study in subcutaneous tumor-bearing nude mice using the human renal cell carcinoma cell line 786-O demonstrated significant uptake and retention with 122 ± 42% of the injected dose of 227Th per gram (% ID/g) remaining in the tumor seven days post dose administration compared to only 3% ID/g for the isotype control-TTC. Tumor accumulation correlated with a dose dependent and statistically significant inhibition in tumor growth compared to vehicle and isotype control-TTC groups at radioactivity doses as low as 50 kBq/kg. The CD70-TTC was well tolerated as evidenced by only modest changes in hematology and normal gain in body weight of the mice. To our knowledge, this is the first report describing molecular targeting of CD70 expressing tumors using a targeted alpha-therapy (TAT).

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.

          We previously found that a polymer conjugated to the anticancer protein neocarzinostatin, named smancs, accumulated more in tumor tissues than did neocarzinostatin. To determine the general mechanism of this tumoritropic accumulation of smancs and other proteins, we used radioactive (51Cr-labeled) proteins of various molecular sizes (Mr 12,000 to 160,000) and other properties. In addition, we used dye-complexed serum albumin to visualize the accumulation in tumors of tumor-bearing mice. Many proteins progressively accumulated in the tumor tissues of these mice, and a ratio of the protein concentration in the tumor to that in the blood of 5 was obtained within 19 to 72 h. A large protein like immunoglobulin G required a longer time to reach this value of 5. The protein concentration ratio in the tumor to that in the blood of neither 1 nor 5 was achieved with neocarzinostatin, a representative of a small protein (Mr 12,000) in all time. We speculate that the tumoritropic accumulation of these proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels. This accumulation of macromolecules in the tumor was also found after i.v. injection of an albumin-dye complex (Mr 69,000), as well as after injection into normal and tumor tissues. The complex was retained only by tumor tissue for prolonged periods. There was little lymphatic recovery of macromolecules from tumor tissue. The present finding is of potential value in macromolecular tumor therapeutics and diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology.

            After binding its natural ligand cluster of differentiation 70 (CD70), CD27, a tumor necrosis factor receptor (TNFR)-associated factor-binding member of the TNFR family, regulates cellular activity in subsets of T, B, and natural killer cells as well as hematopoietic progenitor cells. In normal immune responses, CD27 signaling appears to be limited predominantly by the restricted expression of CD70, which is only transiently expressed by cells of the immune system upon activation. Studies performed in CD27-deficient and CD70-transgenic mice have defined a non-redundant role of this receptor-ligand pair in shaping adaptive T-cell responses. Moreover, adjuvant properties of CD70 have been exploited for the design of anti-cancer vaccines. However, continuous CD27-CD70 interactions may cause immune dysregulation and immunopathology in conditions of chronic immune activation such as during persistent virus infection and autoimmune disease. We conclude that optimal tuning of CD27-CD70 interaction is crucial for the regulation of the cellular immune response. We provide a detailed comparison of costimulation through CD27 with its closely related family members 4-1BB (CD137), CD30, herpes virus entry mediator, OX40 (CD134), and glucocorticoid-induced TNFR family-related gene, and we argue that these receptors do not have a unique function per se but that rather the timing, context, and intensity of these costimulatory signals determine the functional consequence of their activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The molecular architecture of the TNF superfamily.

              Ligands of the TNF (tumour necrosis factor) superfamily have pivotal roles in the organization and function of the immune system, and are implicated in the aetiology of several acquired and genetic diseases. TNF ligands share a common structural motif, the TNF homology domain (THD), which binds to cysteine-rich domains (CRDs) of TNF receptors. CRDs are composed of structural modules, whose variation in number and type confers heterogeneity upon the family. Protein folds reminiscent of the THD and CRD are also found in other protein families, raising the possibility that the mode of interaction between TNF and TNF receptors might be conserved in other contexts.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                22 August 2017
                7 April 2017
                : 8
                : 34
                : 56311-56326
                Affiliations
                1 Thorium Conjugate Research, Bayer AS, Oslo, Norway
                Author notes
                Correspondence to: Urs B. Hagemann, urs.hagemann@ 123456bayer.com
                Article
                16910
                10.18632/oncotarget.16910
                5593563
                0cbe8436-7ca6-4f5c-bb5c-cf830ff5b13c
                Copyright: © 2017 Hagemann et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 25 January 2017
                : 13 March 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                targeted alpha therapy (tat),alpha particles,radioimmunotherapy,thorium-227,renal cell carcinoma

                Comments

                Comment on this article