26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution

      Paleobiology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The number of regenerated arms was counted on specimens of two distinct phenotypes of the stalked crinoidEndoxocrinus parrae(Gervais) from a wide bathymetric range in the Caribbean (178-723 m). In one phenotype, the sample was divided into two groups, one from shallower (< 500 m) depths, the other from deeper (≥ 500 m); in the other phenotype the group divided at 550 m. In both phenotypes, the frequency of regenerated arms is significantly higher in specimens from shallower water than in those from deeper water. If the regenerated arms inEndoxocrinus parraewere the result of sublethal predation, as previously suggested, then predation intensity is higher in shallow water than deep water. These results are consistent with the idea of the late Mesozoic marine revolution—that there has been stronger predation on various invertebrates in shallow-water environments since the late Mesozoic. The stalked crinoids may have been unable to cope with increased predation in shelf environments, and they migrated to offshore environments.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          The Mesozoic marine revolution: evidence from snails, predators and grazers

          Tertiary and Recent marine gastropods include in their ranks a complement of mechanically sturdy forms unknown in earlier epochs. Open coiling, planispiral coiling, and umbilici detract from shell sturdiness, and were commoner among Paleozoic and Early Mesozoic gastropods than among younger forms. Strong external sculpture, narrow elongate apertures, and apertural dentition promote resistance to crushing predation and are primarily associated with post-Jurassic mesogastropods, neogastropods, and neritaceans. The ability to remodel the interior of the shell, developed primarily in gastropods with a non-nacreous shell structure, has contributed greatly to the acquisition of these antipredatory features.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Paleoenvironmental Patterns in the Evolution of Post-Paleozoic Benthic Marine Invertebrates

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptive radiation of the comatulid crinoids

              Modern crinoids are dominated by the comatulids (unstalked forms) which range from the intertidal to abyssal depths. Modern stalked crinoids are restricted to depths greater than about 100 m. In the geologic past some stalked crinoids lived at depths of a few tens of meters or less in reef and bank environments. The primary vehicles postulated for the post-Triassic radiation of comatulids are lack of permanent fixation to the substratum and the capacity for mobility. Development of complex muscular articulations has enabled crawling or swimming which serve in habitat selection and avoidance of stress and predators. These and other adaptations may have bestowed on comatulids a higher survival capacity in shallow-water environments compared to stalked crinoids. Modern stalked crinoids lack mobility and complex behavioral adaptations seen in comatulids. Possibly, stalked crinoids in shallow water were unable to cope with the radiation of abundant, predaceous bony fishes in the late Mesozoic and became restricted to greater depths while the more adaptable comatulids gained ascendancy in shallow water.
                Bookmark

                Author and article information

                Journal
                applab
                Paleobiology
                Paleobiology
                Cambridge University Press (CUP)
                0094-8373
                1938-5331
                1996
                April 2016
                : 22
                : 03
                : 339-351
                Article
                10.1017/S0094837300016328
                0cc1df23-0324-4cc9-bf92-94b9bac5beb5
                © 1996
                History

                Comments

                Comment on this article