0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Amino acid and lipid associated plasma metabolomic patterns are related to healthspan indicators with ageing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis.

          The induction of programmed cell death, or apoptosis, involves activation of a signalling system, many elements of which remain unknown. The sphingomyelin pathway, initiated by hydrolysis of the phospholipid sphingomyelin in the cell membrane to generate the second messenger ceramide, is thought to mediate apoptosis in response to tumour-necrosis factor (TNF)-alpha, to Fas ligand and to X-rays. It is not known whether it plays a role in the stimulation of other forms of stress-induced apoptosis. Given that environmental stresses also stimulate a stress-activated protein kinase (SAPK/JNK), the sphingomyelin and SAPK/JNK signalling systems may be coordinated in induction of apoptosis. Here we report that ceramide initiates apoptosis through the SAPK cascade and provide evidence for a signalling mechanism that integrates cytokine- and stress-activated apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of the adult human plasma metabolome.

            It is well established that disease states are associated with biochemical changes (e.g., diabetes/glucose, cardiovascular disease/cholesterol), as are responses to chemical agents (e.g., medications, toxins, xenobiotics). Recently, nontargeted methods have been used to identify the small molecules (metabolites) in a biological sample to uncover many of the biochemical changes associated with a disease state or chemical response. Given that these experimental results may be influenced by the composition of the cohort, in the present study we assessed the effects of age, sex and race on the relative concentrations of small molecules (metabolites) in the blood of healthy adults. Using gas- and liquid-chromatography in combination with mass spectrometry, a nontargeted metabolomic analysis was performed on plasma collected from an age- and sex-balanced cohort of 269 individuals. Of the more than 300 unique compounds that were detected, significant changes in the relative concentration of more than 100 metabolites were associated with age. Many fewer differences were associated with sex and fewer still with race. Changes in protein, energy and lipid metabolism, as well as oxidative stress, were observed with increasing age. Tricarboxylic acid intermediates, creatine, essential and nonessential amino acids, urea, ornithine, polyamines and oxidative stress markers (e.g., oxoproline, hippurate) increased with age. Compounds related to lipid metabolism, including fatty acids, carnitine, beta-hydroxybutyrate and cholesterol, were lower in the blood of younger individuals. By contrast, relative concentrations of dehydroepiandrosterone-sulfate (a proposed antiaging androgen) were lowest in the oldest age group. Certain xenobiotics (e.g., caffeine) were higher in older subjects, possibly reflecting decreases in hepatic cytochrome P450 activity. Our nontargeted analytical approach detected a large number of metabolites, including those that were found to be statistically altered with age, sex or race. Age-associated changes were more pronounced than those related to differences in sex or race in the population group we studied. Age, sex and race can be confounding factors when comparing different groups in clinical studies. Future studies to determine the influence of diet, lifestyle and medication are also warranted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human serum metabolic profiles are age dependent

              Understanding the complexity of aging is of utmost importance. This can now be addressed by the novel and powerful approach of metabolomics. However, to date, only a few metabolic studies based on large samples are available. Here, we provide novel and specific information on age-related metabolite concentration changes in human homeostasis. We report results from two population-based studies: the KORA F4 study from Germany as a discovery cohort, with 1038 female and 1124 male participants (32–81 years), and the TwinsUK study as replication, with 724 female participants. Targeted metabolomics of fasting serum samples quantified 131 metabolites by FIA-MS/MS. Among these, 71/34 metabolites were significantly associated with age in women/men (BMI adjusted). We further identified a set of 13 independent metabolites in women (with P values ranging from 4.6 × 10−04 to 7.8 × 10−42, αcorr = 0.004). Eleven of these 13 metabolites were replicated in the TwinsUK study, including seven metabolite concentrations that increased with age (C0, C10:1, C12:1, C18:1, SM C16:1, SM C18:1, and PC aa C28:1), while histidine decreased. These results indicate that metabolic profiles are age dependent and might reflect different aging processes, such as incomplete mitochondrial fatty acid oxidation. The use of metabolomics will increase our understanding of aging networks and may lead to discoveries that help enhance healthy aging.
                Bookmark

                Author and article information

                Journal
                Clinical Science
                Clin. Sci.
                Portland Press Ltd.
                0143-5221
                1470-8736
                August 30 2018
                August 31 2018
                August 31 2018
                June 18 2018
                : 132
                : 16
                : 1765-1777
                Article
                10.1042/CS20180409
                29914938
                0cc62a7f-6a99-454d-85ac-0a7151cc3371
                © 2018
                History

                Comments

                Comment on this article