25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Genotyping of Giardia duodenalis Isolates from Symptomatic Individuals Attending Two Major Public Hospitals in Madrid, Spain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The flagellate protozoan Giardia duodenalis is an enteric parasite causing human giardiasis, a major gastrointestinal disease of global distribution affecting both developing and industrialised countries. In Spain, sporadic cases of giardiasis have been regularly identified, particularly in pediatric and immigrant populations. However, there is limited information on the genetic variability of circulating G. duodenalis isolates in the country.

          Methods

          In this longitudinal molecular epidemiological study we report the diversity and frequency of the G. duodenalis assemblages and sub-assemblages identified in 199 stool samples collected from 184 individual with symptoms compatible with giardiasis presenting to two major public hospitals in Madrid for the period December 2013–January 2015. G. duodenalis cysts were initially detected by conventional microscopy and/or immunochomatography on stool samples. Confirmation of the infection was performed by direct immunofluorescence and real-time PCR methods. G. duodenalis assemblages and sub-assemblages were determined by multi-locus genotyping of the glutamate dehydrogenase ( GDH) and β-giardin ( BG) genes of the parasite. Sociodemographic and clinical features of patients infected with G. duodenalis were also analysed.

          Principal findings

          Of 188 confirmed positive samples from 178 giardiasis cases a total of 124 G. duodenalis isolates were successfully typed at the GDH and/or the BG loci, revealing the presence of sub-assemblages BIV (62.1%), AII (15.3%), BIII (4.0%), AI (0.8%), and AIII (0.8%). Additionally, 6.5% of the isolates were only characterised at the assemblage level, being all of them assigned to assemblage B. Discordant genotype results AII/AIII or BIII/BIV were also observed in 10.5% of DNA isolates. A large number of multi-locus genotypes were identified in G. duodenalis assemblage B, but not assemblage A, isolates at both the GDH and BG loci, confirming the high degree of genetic variability observed in other molecular surveys. BIV was the most prevalent genetic variant of G. duodenalis found in individuals with symptomatic giardiasis in the population under study.

          Conclusions

          Human giardiasis is an ongoing public health problem in Spain affecting primarily young children under four years of age but also individuals of all age groups. Our typing and sub-typing results demonstrate that assemblage B is the most prevalent G. duodenalis assemblage circulating in patients with clinical giardiasis in Central Spain. Our analyses also revealed a large genetic variability in assemblage B (but not assemblage A) isolates of the parasite, corroborating the information obtained in similar studies in other geographical regions. We believe that molecular data presented here provide epidemiological evidence at the population level in support of the existence of genetic exchange within assemblages of G. duodenalis.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Zoonotic potential and molecular epidemiology of Giardia species and giardiasis.

          Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biology of Giardia lamblia.

            R D Adam (2001)
            Giardia lamblia is a common cause of diarrhea in humans and other mammals throughout the world. It can be distinguished from other Giardia species by light or electron microscopy. The two major genotypes of G. lamblia that infect humans are so different genetically and biologically that they may warrant separate species or subspecies designations. Trophozoites have nuclei and a well-developed cytoskeleton but lack mitochondria, peroxisomes, and the components of oxidative phosphorylation. They have an endomembrane system with at least some characteristics of the Golgi complex and encoplasmic reticulum, which becomes more extensive in encysting organisms. The primitive nature of the organelles and metabolism, as well as small-subunit rRNA phylogeny, has led to the proposal that Giardia spp. are among the most primitive eukaryotes. G. lamblia probably has a ploidy of 4 and a genome size of approximately 10 to 12 Mb divided among five chromosomes. Most genes have short 5' and 3' untranslated regions and promoter regions that are near the initiation codon. Trophozoites exhibit antigenic variation of an extensive repertoire of cysteine-rich variant-specific surface proteins. Expression is allele specific, and changes in expression from one vsp gene to another have not been associated with sequence alterations or gene rearrangements. The Giardia genome project promises to greatly increase our understanding of this interesting and enigmatic organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zoonotic potential of Giardia.

              Giardia duodenalis (syn. Giardia lamblia and Giardia intestinalis) is a common intestinal parasite of humans and mammals worldwide. Assessing the zoonotic transmission of the infection requires molecular characterization as there is considerable genetic variation within G. duodenalis. To date eight major genetic groups (assemblages) have been identified, two of which (A and B) are found in both humans and animals, whereas the remaining six (C to H) are host-specific and do not infect humans. Sequence-based surveys of single loci have identified a number of genetic variants (genotypes) within assemblages A and B in animal species, some of which may have zoonotic potential. Multi-locus typing data, however, has shown that in most cases, animals do not share identical multi-locus types with humans. Furthermore, interpretation of genotyping data is complicated by the presence of multiple alleles that generate "double peaks" in sequencing files from PCR products, and by the potential exchange of genetic material among isolates, which may account for the non-concordance in the assignment of isolates to specific assemblages. Therefore, a better understanding of the genetics of this parasite is required to allow the design of more sensitive and variable subtyping tools, that in turn may help unravel the complex epidemiology of this infection. Copyright © 2013. Published by Elsevier Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 December 2015
                2015
                : 10
                : 12
                : e0143981
                Affiliations
                [1 ]Parasitology Service, National Centre for Microbiology, Carlos III Health Institute, Majadahonda, Madrid, Spain
                [2 ]Microbiology and Clinical Parasitology Service, University Hospital Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
                [3 ]Microbiology Service, University Hospital Severo Ochoa, Leganés, Madrid, Spain
                Aga Khan University Hospital Nairobi, KENYA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RMR FJM IF DC. Performed the experiments: ADL RMR FJM BB MA. Analyzed the data: ADL RMR FJM IF DC. Contributed reagents/materials/analysis tools: RMR FJM IF. Wrote the paper: DC.

                Article
                PONE-D-15-37604
                10.1371/journal.pone.0143981
                4671680
                26641082
                0cc714a0-aa16-474a-b867-a8faeafc109f
                © 2015 de Lucio et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 2 September 2015
                : 11 November 2015
                Page count
                Figures: 2, Tables: 6, Pages: 21
                Funding
                This work was supported by research projects CP12/03081, Carlos III Health Institute, Ministry of Economy and Competitiveness, Spain (DC), research project PI13/01106, Carlos III Health Institute, Ministry of Economy and Competitiveness, Spain (IF).
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files. Sequence data reported in this manuscript can be obtained from GenBank under accession numbers KT310351 to KT310406.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_

                Similar content145

                Cited by24

                Most referenced authors680