138
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      More insights into the immunosuppressive potential of tumor exosomes

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We did read with great interest the recent review published by Ichim et al on the potential role of tumor exosomes as immune escape mechanism [1], and we were pleased to see that the authors shared our original idea that these organelles may represent a crucial tool of immunosuppression in cancer [2,3]. Indeed, although tumor cells are well acknowledged to affect immune functions through the release of diverse soluble factors or cell-to-cell contact mediated mechanisms [4,5], the involvement of alternative pathways based on the secretion of membrane microvesicles has been so far largely unappreciated [6]. Exosomes are endosome-derived organelles of 50–100 nm size, actively secreted by virtually all cell types through an exocytosis pathway that is used under normal as well as pathological conditions [6]. Their first description can be attributed to the biochemist Rose Johnstone, who reported in her 1980s investigations about these lipid-encased particles produced as a mechanism for shedding of specific membrane functions during reticulocyte maturation [7]. Since then, these curious microvesicles lingered in obscurity, although several reports kept referring to exosomes as potential pathway utilized by different cell types to eliminate cellular material or establish intercellular cross-talk [8]. Finally in 1996 these microparticles were recognized for their central role in antigen presentation with the work of Graça Raposo and Hans Geuze of Utrecht University in the Netherlands, who reported that exosomes secreted by B cells could promote T cell cross-priming through the expression of HLA/peptide complexes [6]. Based on these and following observations about the role of exosomes in antigen presentation, the exacerbated production of these vesicles by tumor cells was initially welcomed as a process potentially involved in the induction and maintenance of tumor immunity [9]. Indeed, the expression of a large panel of tumor proteins with antigenic properties, like MelanA/Mart-1 and gp100 in melanoma-derived exosomes, and CEA and HER2 in exosomes produced by carcinoma cells [9-11], supported the role of these organelles as cell-free source of tumor antigens for T cell priming and paved the way to clinical trials based on vaccination with tumor exosomes in patients with advanced disease [12]. However, following studies from several groups including ours have progressively suggested that these vesicles, being close replicas of the originating cancer cells, could transport not only antigenic material but also molecules responsible for the detrimental effects exerted by tumor cells on the immune system [6,13,14]. As most researchers, we entered the exosome field by chance, in the course of studies on FasL as tumor immune escape mechanism in human cancer. Indeed, despite the first report on the expression of FasL by melanoma [15], we could not succeed in detecting stable membrane expression of this pro-apoptotic molecule on such tumor cells. However, by using immunocytochemistry and immunoelectron microscopy, we found that FasL was indeed detectable intracellularly, as localized in defined endocytic compartments with a clear secretory behaviour. Thanks to this initial observation, we discovered that human melanoma as well as colon carcinoma cells constitutively release FasL and TRAIL-expressing exosomes, which induce death by apoptosis in activated T cells [10,11]. This evidence, confirmed also by Whiteside and coworkers in head and neck cancer [16], highlights a germane role of microvesicular structures in counteracting tumor immunity by simply eliminating activated T cells bearing tumor-reactive TCR. This might occur even at distance (in peripheral lymphoid organs, bone marrow, peripheral blood, and biological fluids) without the need for a direct cell-to-cell contact. And given the evidence that exosome of probable tumor origin are abundantly found in plasma or pathological effusions of cancer patients [9,11], it can be easily hypothesized that this pathway may contribute to the in vivo moulding of immune as well as other cancer-related host responses. More recent studies have then reported that the detrimental effect of tumor exosome on immune effector functions is not restricted to T cells but can target NK cells as well, through the skewing of IL-2 responsiveness in favour of regulatory T cells [17] or down-modulation of NKG2D expression [18]. Moreover, the negative influence of tumor exosomes on specific immunity goes beyond T and NK cells and may also target crucial up-stream steps for T cell cross-priming, namely dendritic cell (DC) differentiation. In fact, we have more recently observed that the presence of tumor exosomes during monocyte differentiation into DC skews the whole process toward the generation of aberrant cells expressing myeloid markers (such as CD14 and CD11b), lacking or bearing low levels of co-stimulatory molecules (like HLA-DR, CD80 and CD86) and spontaneously secreting TGF-beta [19,20]. These cells, which exert a strong immunosuppressive activity on T cell proliferation and function, highly resemble the "myeloid-derived suppressor cell" subset described to accumulate with tumor progression in different murine models [21]. Interestingly enough, melanoma patients with advanced disease have high levels of these CD14+ HLA-DR neg/low TGF beta-secreting cells in their peripheral blood, and this frequency appears to be a disadvantageous factor for the development of immune responses to tumor vaccines [20]. These findings, which again were confirmed in other experimental settings [22], define a very sharp profile of tumor exosomes as efficient delivery system of immunosuppression, contributing to the maintenance of an immune tolerance state in cancer bearing hosts. The interest on exosomes has recently spread out as these vesicles are being found involved in a wide spectrum of physiological and pathological cellular events, as alternative tools of intercellular communication and paracrine functions [23], or as pathogenic pathways in viral [24] and prion-related diseases [25]. Thanks to their peculiar lipid composition, highly enriched in ceramide [26], sphingomyelin, cholesterol and GM3 glycolipid [27], exosomes may serve as a more advantageous carrier of signal delivery favouring stable conformational conditions, increased bioactivity, improved bio-distribution and amplified target interaction of their protein content with respect to soluble molecules. In the last years, literature is indeed flourishing with examples proving the role of tumor exosomes in the transfer of growth factors and cognate receptors to homologous or heterologous target cells. For instance glioma cells can share EGFR by intercellular transfer of membrane-derived microvesicles ('oncosomes') [28], or pancreatic carcinoma can deliver exosomes overexpressing tetraspanin family members and promoting autocrine secretion of MMP and VEGF [29]. The evidence that these organelles can also shape protein synthesis through the transfer of functional mRNAs and microRNAs, as recently reported in transformed mastocytes [30], adds then a further pathway to the potential modulating properties of these peculiar organelles. If tumor exosomes are such a powerful instrument of environmental shaping, then getting rid of them should significantly affect cancer cell ability to survive and expand in vivo. In their review, Ichim et al propose a physical approach based on the extracorporeal removal of exosomes from plasma of cancer patients, through a novel hollow-fiber cartridge (Hemopurifier™) designed to eliminate particles expressing heavily glycosylated surface proteins, like in case of viruses and cancer microvesicles [1]. The approach could be further implemented by the attachment of clinical grade molecules and antibodies to the cartridge resin, to allow microvesicle depletion on the basis of selected marker expression. Although interesting, feasible and potentially effective in the short-term, this strategy could only have an impact on circulating exosomes, leaving vesicles accumulating at tumor tissue level, in draining lymph nodes or in other relevant lymphoid compartments, still available for immunosuppressive functions. Obviously, physical removal would not interfere with the process of exosome secretion, and would indiscriminately eliminate vesicles from both pathological and normal cells. In alternative, we are considering to intervene on tumor exosome secretion by inhibiting up-stream crucial pathways involved in the process. Although definitive information on the mechanisms regulating microvesicle release by cancer cells are presently scantly, preliminary data suggest that particular molecules, such as drugs interfering with microtubule stability (taxanes and vinca alkaloids) [M. Iero, unpublished observations] or additional microtubule-disturbing molecules like vincristine [31], can affect endosomal stability and reduce microvesicle release. Similarly, drugs targeting the activity of enzymatic efflux pumps expressed on acidic vacuoles, such as vacuolar-ATPases inhibitors, could selectively alter exosome trafficking and release in tumor cells [Iero et al., unpublished, [32]]. Benefits from modulation of exosome secretion could also come from qualitatively shaping protein composition of secreted microvesicles with drugs altering biological features of tumor vesicles, such in the case of curcumin, a natural polyphenol which has been shown to reduce immunosuppressive functions of breast carcinoma-secreted exosomes [33]. A more specific approach would be instead to identify the molecular mechanisms responsible for the immunosuppressive activity and the microenvironment remodelling effects of tumor exosomes [34], to selectively interfere with these pathways through specific antibodies, antisense oligonucleotides or signalling inhibitors. Independently from the tool utilized for diminishing exosome release by tumor cells, the most challenging task of the near future is to prove that interfering with microvesicle secretion in vivo may indeed result in tumor growth arrest or slow-down thanks to the recovery of specific immunity and the interruption of paracrine/autocrine loops in tumor microenvironment. Prior to any clinical intervention, experimental studies in animal models should thus be performed to assess what is the real impact that these vesicles play in cancer progression and what is the expected benefit of shutting off their production at tumor site. Authors contributions VH was responsible for editorial writing, senior scientist responsible for the studies on the immunosuppressive functions of tumor exosomes. PF was responsible for editorial reviewing, scientist responsible for the studies on the induction of myeloid-derived suppressor cells by tumor exosomes. MI was responsible for editorial reviewing, scientist responsible for the studies on the modulation of exosome release by tumor cells. SF was responsible for editorial reviewing, external collaborator in the studies on the involvement of proton-pump inhibitors on exosome release. LR was responsible for editorial writing and reviewing, supervisor of the studies on tumor exosomes

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Exosomes: a common pathway for a specialized function.

          Exosomes are membrane vesicles that are released by cells upon fusion of multivesicular bodies with the plasma membrane. Their molecular composition reflects their origin in endosomes as intraluminal vesicles. In addition to a common set of membrane and cytosolic molecules, exosomes harbor unique subsets of proteins linked to cell type-associated functions. Exosome secretion participates in the eradication of obsolete proteins but several findings, essentially in the immune system, indicate that exosomes constitute a potential mode of intercellular communication. Release of exosomes by tumor cells and their implication in the propagation of unconventional pathogens such as prions suggests their participation in pathological situations. These findings open up new therapeutic and diagnostic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malignant effusions and immunogenic tumour-derived exosomes.

            Exosomes derived from tumours are small vesicles released in vitro by tumour cell lines in culture supernatants. To assess the role of these exosomes in vivo, we examined malignant effusions for their presence. We also investigated whether these exosomes could induce production of tumour-specific T cells when pulsed with dendritic cells. We isolated exosomes by ultracentrifugation on sucrose and D(2)O gradients of 11 malignant effusions. We characterised exosomes with Western blot analyses, immunoelectron microscopy, and in-vitro stimulations of autologous T lymphocytes. Malignant effusions accumulate high numbers of membrane vesicles that have a mean diameter of 80 nm (SD 30). These vesicles have antigen-presenting molecules (MHC class-I heat-shock proteins), tetraspanins (CD81), and tumour antigens (Her2/Neu, Mart1, TRP, gp100). These criteria, including their morphological characteristics, indicate the similarities between these vesicles and exosomes. Exosomes from patients with melanoma deliver Mart1 tumour antigens to dendritic cells derived from monocytes (MD-DCs) for cross presentation to clones of cytotoxic T lymphocytes specific to Mart1. In seven of nine patients with cancer, lymphocytes specific to the tumour could be efficiently expanded from peripheral blood cells by pulsing autologous MD-DCs with autologous ascitis exosomes. In one patient tested, we successfully expanded a restricted T-cell repertoire, which could not be recovered carcinomatosis nodules. Exosomes derived from tumours accumulate in ascites from patients with cancer. Ascitis exosomes are a natural and new source of tumour-rejection antigens, opening up new avenues for immunisation against cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein

              Accumulation of myeloid-derived suppressor cells (MDSCs) associated with inhibition of dendritic cell (DC) differentiation is one of the major immunological abnormalities in cancer and leads to suppression of antitumor immune responses. The molecular mechanism of this phenomenon remains unclear. We report here that STAT3-inducible up-regulation of the myeloid-related protein S100A9 enhances MDSC production in cancer. Mice lacking this protein mounted potent antitumor immune responses and rejected implanted tumors. This effect was reversed by administration of wild-type MDSCs from tumor-bearing mice to S100A9-null mice. Overexpression of S100A9 in cultured embryonic stem cells or transgenic mice inhibited the differentiation of DCs and macrophages and induced accumulation of MDSCs. This study demonstrates that tumor-induced up-regulation of S100A9 protein is critically important for accumulation of MDSCs and reveals a novel molecular mechanism of immunological abnormalities in cancer.
                Bookmark

                Author and article information

                Journal
                J Transl Med
                Journal of Translational Medicine
                BioMed Central
                1479-5876
                2008
                30 October 2008
                : 6
                : 63
                Affiliations
                [1 ]Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
                [2 ]Department of Drug Research and Evaluation, Anti-Tumor Drugs Section, Istituto Superiore di Sanità, Rome, Italy
                Article
                1479-5876-6-63
                10.1186/1479-5876-6-63
                2590595
                18973649
                0cce5105-ee17-4e79-b4ac-df6ef085bd5f
                Copyright © 2008 Huber et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 October 2008
                : 30 October 2008
                Categories
                Editorial

                Medicine
                Medicine

                Comments

                Comment on this article