24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Oil and hypoxia alter DNA methylation and transcription of genes related to neurological function in larval Cyprinodon variegatus

      ,
      Aquatic Toxicology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA methylation is an important epigenetic mark involved in modulating transcription. While multiple studies document the ability of environmental stressors to alter methylation patterns, there is little information regarding the effects of oil and hypoxia on the methylome. Oil and hypoxic stress are threats in coastal ecosystems, which act as nursery habitats for developing fish. To explore the methylation altering effects of oil and hypoxia on developing fish, we exposed larval Cyprinodon variegatus to oil, hypoxia, or both for 48 h followed by 48 h of depuration in clean, normoxic conditions. We then used immunoprecipitation coupled with high-throughput sequencing (MeDIP seq) to evaluate genome-wide methylation changes. We also performed RNA seq to associate methylation and altered transcription. Oil and hypoxia together elicited greater impacts to methylation than either stressor individually. Additionally, the oil+hypoxia treatment exhibited an overlap between differentially methylated regions and differential gene expression at 20 loci. Functional analyses of these loci revealed enrichment of processes related to neurological function and development. Two neurological genes (slc1a2, asxl2) showed altered methylation of promoter CpG islands and transcriptional changes, suggesting epigenetic modulation of gene expression. Our results suggest a possible mechanism explaining altered behavior patterns noted in fish following oil exposure.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters

          While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear 1–5 . In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences 5–10 . Tissue-specific intragenic methylation might reduce, 3 or, paradoxically, enhance transcription elongation efficiency 1,2,4,5 . Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes 11–15 . To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters 16 . The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus 17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies.
            • Record: found
            • Abstract: found
            • Article: not found

            MethPrimer: designing primers for methylation PCRs.

            DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ConsensusPathDB—a database for integrating human functional interaction networks

              ConsensusPathDB is a database system for the integration of human functional interactions. Current knowledge of these interactions is dispersed in more than 200 databases, each having a specific focus and data format. ConsensusPathDB currently integrates the content of 12 different interaction databases with heterogeneous foci comprising a total of 26 133 distinct physical entities and 74 289 distinct functional interactions (protein–protein interactions, biochemical reactions, gene regulatory interactions), and covering 1738 pathways. We describe the database schema and the methods used for data integration. Furthermore, we describe the functionality of the ConsensusPathDB web interface, where users can search and visualize interaction networks, upload, modify and expand networks in BioPAX, SBML or PSI-MI format, or carry out over-representation analysis with uploaded identifier lists with respect to substructures derived from the integrated interaction network. The ConsensusPathDB database is available at: http://cpdb.molgen.mpg.de

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Aquatic Toxicology
                Aquatic Toxicology
                Elsevier BV
                0166445X
                October 2022
                October 2022
                : 251
                : 106267
                Article
                10.1016/j.aquatox.2022.106267
                36058102
                0cdb447a-1fb1-4b3a-96a8-dd551b5cb011
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article

                Related Documents Log