15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning Techniques for Fine Dead Fuel Load Estimation Using Multi-Source Remote Sensing Data

      , , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fine dead fuel load is one of the most significant components of wildfires without which ignition would fail. Several studies have previously investigated 1-h fuel load using standard fuel parameters or site-specific fuel parameters estimated ad hoc for the landscape. On the one hand, these methods have a large margin of error, while on the other their production times and costs are high. In response to this gap, a set of models was developed combining multi-source remote sensing data, field data and machine learning techniques to quantitatively estimate fine dead fuel load and understand its determining factors. Therefore, the objectives of the study were to: (1) estimate 1-h fuel loads using remote sensing predictors and machine learning techniques; (2) evaluate the performance of each machine learning technique compared to traditional linear regression models; (3) assess the importance of each remote sensing predictor; and (4) map the 1-h fuel load in a pilot area of the Apulia region (southern Italy). In pursuit of the above, fine dead fuel load estimation was performed by the integration of field inventory data (251 plots), Synthetic Aperture Radar (SAR, Sentinel-1), optical (Sentinel-2), and Light Detection and Ranging (LIDAR) data applying three different algorithms: Multiple Linear regression (MLR), Random Forest (RF), and Support Vector Machine (SVM). Model performances were evaluated using Root Mean Squared Error (RMSE), Mean Squared Error (MSE), the coefficient of determination (R2) and Pearson’s correlation coefficient (r). The results showed that RF (RMSE: 0.09; MSE: 0.01; r: 0.71; R2: 0.50) had more predictive power compared to the other models, while SVM (RMSE: 0.10; MSE: 0.01; r: 0.63; R2: 0.39) and MLR (RMSE: 0.11; MSE: 0.01; r: 0.63; R2: 0.40) showed similar performances. LIDAR variables (Canopy Height Model and Canopy cover) were more important in fuel estimation than optical and radar variables. In fact, the results highlighted a positive relationship between 1-h fuel load and the presence of the tree component. Conversely, the geomorphological variables appeared to have lower predictive power. Overall, the 1-h fuel load map developed by the RF model can be a valuable tool to support decision making and can be used in regional wildfire risk management.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space

          Bo-Cai Gao (1996)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Red and photographic infrared linear combinations for monitoring vegetation

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Support vector machines

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                May 2021
                April 23 2021
                : 13
                : 9
                : 1658
                Article
                10.3390/rs13091658
                0ce395ba-3dc0-4a8d-bbc9-05f0f53943bc
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article