+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Radiofrequency-induced hyperthermia (HT) treatments for cancer include conventional capacitive coupling hyperthermia (cCHT) and modulated electro-hyperthermia (mEHT). In this study, we directly compared these methods with regard to in vitro cytotoxicity and mechanisms of action under isothermal conditions. Hepatoma (HepG2) cells were exposed to HT treatment (42°C for 30 min) using mEHT, cCHT or a water bath. mEHT produced a much higher apoptosis rate (43.1% ± 5.8%) than cCHT (10.0% ± 0.6%), the water bath (8.4% ± 1.7%) or a 37°C control (6.6% ± 1.1%). The apoptosis-inducing effect of mEHT at 42°C was similar to that achieved with a water bath at 46°C. mEHT also increased expression of caspase-3, 8 and 9. All three hyperthermia methods increased intracellular heat shock protein 70 (Hsp70) levels, but only mEHT greatly increased the release of Hsp70 from cells. Calreticulin and E-cadherin levels in the cell membrane also increased after mEHT treatment, but not after cCHT or water bath. These results suggest that mEHT selectively deposits energy on the cell membrane and may be a useful treatment modality that targets cancer cell membranes.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Hyperthermia in combined treatment of cancer.

          Hyperthermia, the procedure of raising the temperature of tumour-loaded tissue to 40-43 degrees C, is applied as an adjunctive therapy with various established cancer treatments such as radiotherapy and chemotherapy. The potential to control power distributions in vivo has been significantly improved lately by the development of planning systems and other modelling tools. This increased understanding has led to the design of multiantenna applicators (including their transforming networks) and implementation of systems for monitoring of E-fields (eg, electro-optical sensors) and temperature (particularly, on-line magnetic resonance tomography). Several phase III trials comparing radiotherapy alone or with hyperthermia have shown a beneficial effect of hyperthermia (with existing standard equipment) in terms of local control (eg, recurrent breast cancer and malignant melanoma) and survival (eg, head and neck lymph-node metastases, glioblastoma, cervical carcinoma). Therefore, further development of existing technology and elucidation of molecular mechanisms are justified. In recent molecular and biological investigations there have been novel applications such as gene therapy or immunotherapy (vaccination) with temperature acting as an enhancer, to trigger or to switch mechanisms on and off. However, for every particular temperature-dependent interaction exploited for clinical purposes, sophisticated control of temperature, spatially as well as temporally, in deep body regions will further improve the potential.
            • Record: found
            • Abstract: found
            • Article: not found

            Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47.

            Under normal physiological conditions, cellular homeostasis is partly regulated by a balance of pro- and anti-phagocytic signals. CD47, which prevents cancer cell phagocytosis by the innate immune system, is highly expressed on several human cancers including acute myeloid leukemia, non-Hodgkin's lymphoma, and bladder cancer. Blocking CD47 with a monoclonal antibody results in phagocytosis of cancer cells and leads to in vivo tumor elimination, yet normal cells remain mostly unaffected. Thus, we postulated that cancer cells must also display a potent pro-phagocytic signal. Here, we identified calreticulin as a pro-phagocytic signal that was highly expressed on the surface of several human cancers, but was minimally expressed on most normal cells. Increased CD47 expression correlated with high amounts of calreticulin on cancer cells and was necessary for protection from calreticulin-mediated phagocytosis. Blocking the interaction of target cell calreticulin with its receptor, low-density lipoprotein receptor-related protein, on phagocytic cells prevented anti-CD47 antibody-mediated phagocytosis. Furthermore, increased calreticulin expression was an adverse prognostic factor in diverse tumors including neuroblastoma, bladder cancer, and non-Hodgkin's lymphoma. These findings identify calreticulin as the dominant pro-phagocytic signal on several human cancers, provide an explanation for the selective targeting of tumor cells by anti-CD47 antibody, and highlight the balance between pro- and anti-phagocytic signals in the immune evasion of cancer.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy

              Hyperthermia means overheating of the living object completely or partly. Hyperthermia, the procedure of raising the temperature of a part of or the whole body above normal for a defined period of time, is applied alone or as an adjunctive with various established cancer treatment modalities such as radiotherapy and chemotherapy. However, hyperthermia is not generally accepted as conventional therapy. The problem is its controversial performance. The controversy is originated from the complications of the deep heating and the focusing of the heat effect. The idea of oncothermia solves the selective deep action on nearly cellular resolution. We would like to demonstrate the force and perspectives of oncothermia, as a highly specialized hyperthermia in clinical oncology. Our aim is to prove the ability of oncothermia to be a candidate to become a widely accepted modality of the standard cancer care. We would like to show the proofs and the challenges of the hyperthermia and oncothermia applications to provide the presently available data and summarize the knowledge in the topic. Like many early stage therapies, oncothermia lacks adequate treatment experience and long-range, comprehensive statistics that can help us optimize its use for all indications.

                Author and article information

                Impact Journals LLC
                20 December 2016
                20 August 2016
                : 7
                : 51
                : 84082-84092
                1 Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
                2 Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
                3 School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
                4 Institute of Nuclear Energy Research, Taoyuan, Taiwan
                5 Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
                6 Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
                Author notes
                Correspondence to: Kwan-Hwa Chi, M006565@ 123456ms.skh.org.tw
                Copyright: © 2016 Yang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                : 3 May 2016
                : 11 August 2016
                Research Paper

                Oncology & Radiotherapy
                modulated electro-hyperthermia,conventional capacitive coupling hyperthermia,water bath,cytotoxicity,cell membrane


                Comment on this article