34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      sRNATarBase 3.0: an updated database for sRNA-target interactions in bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial sRNAs are a class of small regulatory RNAs of about 40–500 nt in length; they play multiple biological roles through binding to their target mRNAs or proteins. Therefore, elucidating sRNA targets is very important. However, only targets of a few sRNAs have been described. To facilitate sRNA functional studies such as developing sRNA target prediction models, we updated the sRNATarBase database, which was initially developed in 2010. The new version (recently moved to http://ccb1.bmi.ac.cn/srnatarbase/) contains 771 sRNA-target entries manually collected from 213 papers, and 23 290 and 11 750 predicted targets from sRNATarget and sTarPicker, respectively. Among the 771 entries, 475 and 17 were involved in validated sRNA–mRNA and sRNA–protein interactions, respectively, while 279 had no reported interactions. We also presented detailed information for 316 binding regions of sRNA-target mRNA interactions and related mutation experiments, as well as new features, including NCBI sequence viewer, sRNA regulatory network, target prediction-based GO and pathway annotations, and error report system. The new version provides a comprehensive annotation of validated sRNA-target interactions, and will be a useful resource for bacterial sRNA studies.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cytoscape Web: an interactive web-based network browser

          Summary: Cytoscape Web is a web-based network visualization tool–modeled after Cytoscape–which is open source, interactive, customizable and easily integrated into web sites. Multiple file exchange formats can be used to load data into Cytoscape Web, including GraphML, XGMML and SIF. Availability and Implementation: Cytoscape Web is implemented in Flex/ActionScript with a JavaScript API and is freely available at http://cytoscapeweb.cytoscape.org/ Contact: gary.bader@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more

            This article summarizes our progress with RegulonDB (http://regulondb.ccg.unam.mx/) during the past 2 years. We have kept up-to-date the knowledge from the published literature regarding transcriptional regulation in Escherichia coli K-12. We have maintained and expanded our curation efforts to improve the breadth and quality of the encoded experimental knowledge, and we have implemented criteria for the quality of our computational predictions. Regulatory phrases now provide high-level descriptions of regulatory regions. We expanded the assignment of quality to various sources of evidence, particularly for knowledge generated through high-throughput (HT) technology. Based on our analysis of most relevant methods, we defined rules for determining the quality of evidence when multiple independent sources support an entry. With this latest release of RegulonDB, we present a new highly reliable larger collection of transcription start sites, a result of our experimental HT genome-wide efforts. These improvements, together with several novel enhancements (the tracks display, uploading format and curational guidelines), address the challenges of incorporating HT-generated knowledge into RegulonDB. Information on the evolutionary conservation of regulatory elements is also available now. Altogether, RegulonDB version 8.0 is a much better home for integrating knowledge on gene regulation from the sources of information currently available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CsrB sRNA family: sequestration of RNA-binding regulatory proteins.

              Noncoding regulatory RNA molecules, also known as small RNAs, participate in several bacterial regulatory networks. The central component of the carbon storage regulator (Csr) and the homologous repressor of secondary metabolites (Rsm) systems is an RNA binding protein (CsrA or RsmA) that regulates gene expression post-transcriptionally by affecting ribosome binding and/or mRNA stability. Members of the CsrB family of noncoding regulatory RNA molecules contain multiple CsrA binding sites and function as CsrA antagonists by sequestering this protein. Depending on the particular organism, the Csr (or Rsm) system participates in global regulatory circuits that control central carbon flux, the production of extracellular products, cell motility, biofilm formation, quorum sensing and/or pathogenesis.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                04 January 2016
                25 October 2015
                25 October 2015
                : 44
                : Database issue , Database issue
                : D248-D253
                Affiliations
                [1 ]Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Haidian district, Beijing 100850, China
                [2 ]Department of Laboratory Medicine, Jinan Military General Hospital, Jinan, Shandong 250031, China
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +86 10 6821 3039; Fax: +86 10 6821 3039; Email: wujuchina@ 123456126.com
                Correspondence may also be addressed to Yuan Cao. Tel: +86 531 51666917; Email: labs.net@ 123456gmail.com
                []These authors contributed equally to this work as first authors.
                Article
                10.1093/nar/gkv1127
                4702819
                26503244
                0d007920-3d1c-47a0-a345-8a9245e25984
                © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 October 2015
                : 24 September 2015
                : 01 August 2015
                Page count
                Pages: 6
                Categories
                Database Issue
                Custom metadata
                04 January 2016

                Genetics
                Genetics

                Comments

                Comment on this article