Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Soil fungal abundance and plant functional traits drive fertile island formation in global drylands

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

      Journal of Ecology

      Wiley-Blackwell

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: not found
          • Article: not found

          Very high resolution interpolated climate surfaces for global land areas

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms

            DNA sequencing continues to decrease in cost with the Illumina HiSeq2000 generating up to 600 Gb of paired-end 100 base reads in a ten-day run. Here we present a protocol for community amplicon sequencing on the HiSeq2000 and MiSeq Illumina platforms, and apply that protocol to sequence 24 microbial communities from host-associated and free-living environments. A critical question as more sequencing platforms become available is whether biological conclusions derived on one platform are consistent with what would be derived on a different platform. We show that the protocol developed for these instruments successfully recaptures known biological results, and additionally that biological conclusions are consistent across sequencing platforms (the HiSeq2000 versus the MiSeq) and across the sequenced regions of amplicons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.

              Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5-20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.
                Bookmark

                Author and article information

                Journal
                Journal of Ecology
                J Ecol
                Wiley-Blackwell
                00220477
                January 2018
                January 25 2018
                : 106
                : 1
                : 242-253
                Article
                10.1111/1365-2745.12871
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article