5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Relation between Activated Smooth-Muscle Cells in Coronary-Artery Lesions and Restenosis after Atherectomy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination.

          The phenomenon of homologous recombination, which allows specific gene conversion and gene insertion, can be a powerful system for the study of eukaryotic cell biology. Data are presented demonstrating that integration of a transfected plasmid by homologous recombination occurs in the motile eukaryotic cell Dictyostelium discoideum. A plasmid carrying a G418 resistance gene and the amino terminal half of the myosin heavy chain gene was used to transfect Dictyostelium. A large fraction of the resultant G418-resistant cells had the plasmid integrated into the single genomic copy of the heavy chain gene. These cells, which fail to express the native myosin but express the myosin fragment, are defective in cytokinesis and become large and multinucleate. In spite of the absence of native myosin, these cells, termed hmm cells, exhibit many forms of cell movement, including membrane ruffling, phagocytosis, and chemotaxis. The hmm cells can aggregate but are blocked at a later stage in the Dictyostelium developmental cycle. The hmm cells revert to the wild-type phenotype. Reversion of the hmm phenotype is due to excision and loss of the transforming plasmid. The revertant cells express native myosin, are G418 sensitive, and have a normal developmental cycle. These results constitute genetic proof that the intact myosin molecule is required for cytokinesis and not for karyokinesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes.

            We report the cloning of cDNAs encoding two different human nonmuscle myosin heavy chains designated NMMHC-A and NMMHC-B. The mRNAs encoding NMMHC-A and NMMHC-B are both 7.5 kb in size but are shown to be the products of different genes, which are localized to chromosome 22q11.2 and chromosome 17q13, respectively. In aggreement with previously reported results using avian tissues, we show that the mRNAs encoding the two myosin heavy chain isoforms are differentially expressed in rat nonmuscle and muscle tissues as well as in a number of human cell lines. The cDNA sequence encoding the 5' portion of the NMMHC-A isoform completes the previously published 3' cDNA sequence encoding a human myosin heavy chain, thus providing the cDNA sequence encoding the entire NMMHC-A amino acid sequence. Comparison of this sequence to cDNA clones encoding the amino-terminal one third of the NMMHC-B sequence (amino acids 58-718) shows them to be 89% identical at the amino acid level and 74% identical at the nucleotide level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell proliferation in human coronary arteries.

              Despite the lack of direct evidence for cell multiplication, proliferation of smooth muscle cells in human atherosclerotic lesions has been assumed to play a central role in ontogeny of the plaque. We used antibodies to cell cycle-related proteins on tissue sections of human arteries and coronary atherosclerotic plaques. Specific cell types were identified by immunochemical reagents for smooth muscle, monocyte-macrophages, and other blood cells. Low rates of smooth muscle cell proliferation were observed. Macrophages were also observed with rates of proliferation comparable to that of the smooth muscle. Additional replicating cells could not be defined as belonging to specific cell types with the reagents used in this study. These findings imply that smooth muscle replication in advanced plaques is indolent and raise the possibility of a role for proliferating leukocytes.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                New England Journal of Medicine (NEJM/MMS)
                0028-4793
                1533-4406
                March 04 1993
                March 04 1993
                : 328
                : 9
                : 608-613
                Article
                10.1056/NEJM199303043280903
                0d05d2ae-8eff-4d6f-b983-3fd926bdaca5
                © 1993
                History

                Comments

                Comment on this article