Generalized linear models (GLMs) such as logistic and Poisson regression are among the most common statistical methods for modeling binary and count outcomes. Though single-coefficient tests (odds ratios, incidence rate ratios) are the most common way to test predictor-outcome relations in these models, they provide limited information on the magnitude and nature of relations with outcomes. We assert that this is largely because they do not describe direct relations with quantities of interest (QoIs) such as probabilities and counts. Shifting focus to QoIs makes several critical nuances of GLMs more apparent.