16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase–NLRP3 inflammasome axis-dependent microglial activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The mechanisms of cognitive impairments in Parkinson’s disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation.

          Objectives

          To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model.

          Methods

          Cognitive performance was measured in wild type and Mac1 −/− mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)–NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR.

          Results

          Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice.

          Conclusions

          Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX–NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12974-023-02732-x.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Parkinson's disease.

          Parkinson's disease is a neurological disorder with evolving layers of complexity. It has long been characterised by the classical motor features of parkinsonism associated with Lewy bodies and loss of dopaminergic neurons in the substantia nigra. However, the symptomatology of Parkinson's disease is now recognised as heterogeneous, with clinically significant non-motor features. Similarly, its pathology involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates other than just Lewy bodies. The cause of Parkinson's disease remains unknown, but risk of developing Parkinson's disease is no longer viewed as primarily due to environmental factors. Instead, Parkinson's disease seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of Parkinson's disease is accompanied by clinical challenges, including an inability to make a definitive diagnosis at the earliest stages of the disease and difficulties in the management of symptoms at later stages. Furthermore, there are no treatments that slow the neurodegenerative process. In this Seminar, we review these complexities and challenges of Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Staging of brain pathology related to sporadic Parkinson’s disease

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia Function in the Central Nervous System During Health and Neurodegeneration.

              Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases. Expected final online publication date for the Annual Review of Immunology Volume 35 is April 26, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
                Bookmark

                Author and article information

                Contributors
                zhaoj@dmu.edu.cn
                wangq4@126.com
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                18 February 2023
                18 February 2023
                2023
                : 20
                : 42
                Affiliations
                [1 ]GRID grid.411971.b, ISNI 0000 0000 9558 1426, Dalian Medical University Library, , Dalian Medical University, ; No. 9 W. Lvshun South Road, Dalian, 116044 China
                [2 ]GRID grid.411971.b, ISNI 0000 0000 9558 1426, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, , Dalian Medical University, ; Dalian, 116044 China
                [3 ]GRID grid.411971.b, ISNI 0000 0000 9558 1426, School of Public Health, , Dalian Medical University, ; No. 9 W. Lvshun South Road, Dalian, 116044 China
                Article
                2732
                10.1186/s12974-023-02732-x
                9938991
                36804009
                0d0e784a-f2d8-4577-b23a-6c92e47241d4
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 5 July 2022
                : 13 February 2023
                Funding
                Funded by: Liaoning Provincial Natural Science Foundation of China
                Award ID: 2020-MS-264
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                Neurosciences
                integrin,pesticide,learning and memory deficits,nlrp3 inflammasome,nadph oxidase,microglial activation,parkinson’s disease

                Comments

                Comment on this article