18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Histochemical arguments for muscular non-shivering thermogenesis in muscovy ducklings.

      1 , , ,
      The Journal of physiology

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          1. The histochemical characteristics of gastrocnemius muscle were investigated in 6-week-old cold-acclimated (5 weeks, 4 degrees C) and glucagon-treated (5 weeks, 25 degrees C, 103 nmol/kg I.P. twice daily) muscovy ducklings, two groups able to develop non-shivering thermogenesis in vivo. A comparison was made with thermoneutral controls (25 degrees C) of the same age. All animals were fed ad libitum. Fibre type, fibre area and capillary supply have been studied. Further, a quantitative histochemical method for mitochondrial Mg(2+)-ATPase activity was developed to characterize the mitochondrial coupling state in situ. 2. White gastrocnemius was composed of fast glycolytic (FG) and fast oxidative glycolytic (FOG) fibres, while red gastrocnemius contained FOG and slow oxidative (SO) fibres. In white gastrocnemius, the proportion of FG fibres was higher in glucagon-treated than in control or cold-acclimated ducklings. In red gastrocnemius, the proportion of SO fibres was higher in both cold-acclimated and glucagon-treated ducklings than in controls. The area of all fibres was generally lower in glucagon-treated than in other ducklings. 3. The capillary density was higher in both red and white components of the gastrocnemius muscle in cold-acclimated and glucagon-treated than in control ducklings, as a result of an increased number of capillaries around each fibre. 4. In all fibres, except the FG type in cold-acclimated ducklings, the staining intensity of the Mg(2+)-ATPase reaction was higher in cold-acclimated and glucagon-treated than in control ducklings whereas the staining intensity with maximal decoupling of oxidative phosphorylation by dinitrophenol was unchanged. This indicated a more loose-coupled state of mitochondria in situ in all fibres of cold-acclimated ducklings, and in FOG fibres of white gastrocnemius and SO fibres of red gastrocnemius in glucagon-treated ducklings. 5. These results indicated a higher oxidative metabolism of skeletal muscle in both cold-acclimated and glucagon-treated than in control ducklings, and for most of the parameters studied, a similarity between cold acclimation and glucagon treatment. Because of the higher loose-coupled state of muscle mitochondria in cold-acclimated and glucagon-treated than in control ducklings, the higher oxidative capacity of skeletal muscle in these ducklings could be used for heat production rather than ATP synthesis and account for muscular non-shivering thermogenesis.

          Related collections

          Author and article information

          Journal
          J. Physiol. (Lond.)
          The Journal of physiology
          0022-3751
          0022-3751
          Nov 1992
          : 457
          Affiliations
          [1 ] Laboratoire de Thermorégulation et Energétique de l'Exercise, URA 1341 CNRS, Lyon, France.
          Article
          1175716
          1297835
          0d2ff7e3-3491-4b70-b8da-82f05e05a33a
          History

          Comments

          Comment on this article