26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two billion people worldwide take rice ( Oryza sativa L.) as a staple food. Phosphorus (P) and Nitrogen (N) are the major requirements of rice; although these are available in limited concentrations within rice growing regions. Among different types of Plant growth-promoting rhizobacteria (PGPR), Phosphate solubilizing rhizobacteria (PSRB) constitute an important class. These are known for plant growth promotion by enhancing P and N uptake. PSRB are nowadays used as biofertilizers to restore the soil health. Under the present investigation identification, characterization and optimization of phosphate solubilizing activity of these microbes at different pH, temperature and salt concentrations was carried out. Thirty-seven isolates were recovered from different regions of rice rhizosphere on Pikovskaya (PVK) agar among which 15 isolates were recovered from R.S. Pura, 12 isolates from Bishnah and 10 isolates were recovered from Akhnoor sector of Jammu, India. A prominent halo zone of clearance was developed around the colonies of 12 different isolates, indicating phosphate solubilization activity. Four distinct isolates were amplified, cloned and sequenced for taxonomic identification using 16S primers. The results indicated that PS 1, PS 2, PS 3, PS 4 were related to Pseudomonas aeruginosa, Bacillus subtilis strain 1 , B. subtilis strain 2 , B. subtilis strain 3, respectively. These strains when grown at a wide range of ecological factors showed maximum growth at pH between 6.8 and 8.8, temperature between 28 °C and 37 °C and salinity between 1% and 2%. Screening for phosphate solubilization activity revealed that the halo zone diameter formed by these isolates extended from 2.1 to 3.2 mm. The phosphate solubilizing efficiency (SE) ranged from 35.4 to 50.9 with highest value of 50.9 by PS4 and maximum P solubilization of 10.22 µg/ml was recorded by PS4 at 7th day. Phosphate solubilization activity of these identified PSRB strains can be utilized and explored in the rice growing belts of Jammu region which are deficient in phosphorus. MIC value for zinc sulphate heptahydrate in 12 isolates varied from 1 mg/ml to 6 mg/ml. Phosphate solubilization activity and MIC of these identified PSRB strains can be utilized and explored in the rice growing belts of Jammu region which are deficient in phosphorus.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress.

          Reactive oxygen species (ROS) are produced in plants as byproducts during many metabolic reactions, such as photosynthesis and respiration. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidant defense. Generation of ROS causes rapid cell damage by triggering a chain reaction. Cells have evolved an elaborate system of enzymatic and nonenzymatic antioxidants which help to scavenge these indigenously generated ROS. Various enzymes involved in ROS-scavenging have been manipulated, over expressed or downregulated to add to the present knowledge and understanding the role of the antioxidant systems. The present article reviews the manipulation of enzymatic and nonenzymatic antioxidants in plants to enhance the environmental stress tolerance and also throws light on ROS and redox signaling, calcium signaling, and ABA signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence

            Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities.

              Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 72 bacterial isolates belonging to Azotobacter, fluorescent Pseudomonas, Mesorhizobium and Bacillus were isolated from different rhizospheric soil and plant root nodules in the vicinity of Aligarh. These test isolates were biochemically characterized. These isolates were screened in vitro for their plant growth promoting traits like production of indoleacetic acid (IAA), ammonia (NH(3)), hydrogen cyanide (HCN), siderophore, phosphate solubilization and antifungal activity. More than 80% of the isolates of Azotobacter, fluorescent Pseudomonas and Mesorhizobium ciceri produced IAA, whereas only 20% of Bacillus isolates was IAA producer. Solubilization of phosphate was commonly detected in the isolates of Bacillus (80%) followed by Azotobacter (74.47%), Pseudomonas (55.56%) and Mesorhizobium (16.67%). All test isolates could produce ammonia but none of the isolates hydrolyzed chitin. Siderophore production and antifungal activity of these isolates except Mesorhizobium were exhibited by 10-12.77% isolates. HCN production was more common trait of Pseudomonas (88.89%) and Bacillus (50%). On the basis of multiple plant growth promoting activities, eleven bacterial isolates (seven Azotobacter, three Pseudomonas and one Bacillus) were evaluated for their quantitative IAA production, and broad-spectrum (active against three test fungi) antifungal activity. Almost at all concentration of tryptophan (50-500 microg/ml), IAA production was highest in the Pseudomonas followed by Azotobacter and Bacillus isolates. Azotobacter isolates (AZT(3), AZT(13), AZT(23)), Pseudomonas (Ps(5)) and Bacillus (B(1)) showed broad-spectrum antifungal activity on Muller-Hinton medium against Aspergillus, one or more species of Fusarium and Rhizoctonia bataticola. Further evaluation of the isolates exhibiting multiple plant growth promoting (PGP) traits on soil-plant system is needed to uncover their efficacy as effective PGPR.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                05 October 2021
                January 2022
                05 October 2021
                : 29
                : 1
                : 35-42
                Affiliations
                [a ]Division of Soil Science & Agriculture Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha 180009, Jammu, India
                [b ]Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
                [c ]Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
                Author notes
                [* ]Corresponding author. renugupta2781975@ 123456gmail.com
                Article
                S1319-562X(21)00877-9
                10.1016/j.sjbs.2021.09.075
                8717154
                35002393
                0d4f6783-43a7-4ebf-8641-b27f1ba9d051
                © 2021 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 22 August 2021
                : 27 September 2021
                : 28 September 2021
                Categories
                Original Article

                rice,phosphorus,plant growth promoting rhizobacteria (pgpr),phosphate solubilizing rhizobacteria (psrb),16s primers,rhizosphere

                Comments

                Comment on this article