Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct Cell–Cell Interactions in the Endometrium and in Endometrial Pathophysiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell contacts exhibit a considerable influence on tissue physiology and homeostasis by controlling paracellular and intercellular transport processes, as well as by affecting signaling pathways. Since they maintain cell polarity, they play an important role in cell plasticity. The knowledge about the junctional protein families and their interactions has increased considerably during recent years. In contrast to most other tissues, the endometrium undergoes extensive physiological changes and reveals an extraordinary plasticity due to its crucial role in the establishment and maintenance of pregnancy. These complex changes are accompanied by changes in direct cell–cell contacts to meet the various requirements in the respective developmental stage. Impairment of this sophisticated differentiation process may lead to failure of implantation and embryo development and may be involved in the pathogenesis of endometrial diseases. In this article, we focus on the knowledge about the distribution and regulation of the different junctional proteins in the endometrium during cycling and pregnancy, as well as in pathologic conditions such as endometriosis and cancer. Decoding these sophisticated interactions should improve our understanding of endometrial physiology as well as of the mechanisms involved in pathological conditions.

          Related collections

          Most cited references 157

          • Record: found
          • Abstract: found
          • Article: not found

          Convergence of Wnt, beta-catenin, and cadherin pathways.

          The specification and proper arrangements of new cell types during tissue differentiation require the coordinated regulation of gene expression and precise interactions between neighboring cells. Of the many growth factors involved in these events, Wnts are particularly interesting regulators, because a key component of their signaling pathway, beta-catenin, also functions as a component of the cadherin complex, which controls cell-cell adhesion and influences cell migration. Here, we assemble evidence of possible interrelations between Wnt and other growth factor signaling, beta-catenin functions, and cadherin-mediated adhesion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multifunctional strands in tight junctions.

            Tight junctions are one mode of cell-cell adhesion in epithelial and endothelial cellular sheets. They act as a primary barrier to the diffusion of solutes through the intercellular space, create a boundary between the apical and the basolateral plasma membrane domains, and recruit various cytoskeletal as well as signalling molecules at their cytoplasmic surface. New insights into the molecular architecture of tight junctions allow us to now discuss the structure and functions of this unique cell-cell adhesion apparatus in molecular terms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              JUNCTIONAL COMPLEXES IN VARIOUS EPITHELIA

              The epithelia of a number of glands and cavitary organs of the rat and guinea pig have been surveyed, and in all cases investigated, a characteristic tripartite junctional complex has been found between adjacent cells. Although the complex differs in precise arrangement from one organ to another, it has been regularly encountered in the mucosal epithelia of the stomach, intestine, gall bladder, uterus, and oviduct; in the glandular epithelia of the liver, pancreas, parotid, stomach, and thyroid; in the epithelia of pancreatic, hepatic, and salivary ducts; and finally, between the epithelial cells of the nephron (proximal and distal convolution, collecting ducts). The elements of the complex, identified as zonula occludens (tight junction), zonula adhaerens (intermediary junction), and macula adhaerens (desmosome), occupy a juxtaluminal position and succeed each other in the order given in an apical-basal direction. The zonula occludens (tight junction) is characterized by fusion of the adjacent cell membranes resulting in obliteration of the intercellular space over variable distances. Within the obliterated zone, the dense outer leaflets of the adjoining cell membranes converge to form a single intermediate line. A diffuse band of dense cytoplasmic material is often associated with this junction, but its development varies from one epithelium to another. The zonula adhaerens (intermediate junction) is characterized by the presence of an intercellular space (∼200 A) occupied by homogeneous, apparently amorphous material of low density; by strict parallelism of the adjoining cell membranes over distances of 0.2 to 0.5 µ; and by conspicuous bands of dense material located in the subjacent cytoplasmic matrix. The desmosome or macula adhaerens is also characterized by the presence of an intercellular space (∼240 A) which, in this case, contains a central disc of dense material; by discrete cytoplasmic plaques disposed parallel to the inner leaflet of each cell membrane; and by the presence of bundles of cytoplasmic fibrils converging on the plaques. The zonula occludens appears to form a continuous belt-like attachment, whereas the desmosome is a discontinuous, button-like structure. The zomula adhaerens is continuous in most epithelia but discontinuous in some. Observations made during experimental hemoglobinuria in rats showed that the hemoglobin, which undergoes enough concentration in the nephron lumina to act as an electron-opaque mass tracer, does not penetrate the intercellular spaces beyond the zonula occludens. Similar observations were made in pancreatic acini and ducts where discharged zymogen served as a mass tracer. Hence the tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal." The desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.
                Bookmark

                Author and article information

                Affiliations
                Institute of Anatomy, University Hospital, University Duisburg-Essen, 45147 Essen, Germany; susanne.grund@ 123456uk-essen.de
                Author notes
                [* ]Correspondence: ruth.gruemmer@ 123456uk-essen.de ; Tel.: +49-201-723-4290
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 July 2018
                August 2018
                : 19
                : 8
                30061539 6121364 10.3390/ijms19082227 ijms-19-02227
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article