10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors.

      The Journal of Biological Chemistry
      Amino Acid Sequence, Chromosome Mapping, Cloning, Molecular, Cyclic AMP, physiology, Fatty Acids, Unsaturated, pharmacology, GTP-Binding Proteins, Humans, Hydrogen-Ion Concentration, Lysophospholipids, Molecular Sequence Data, Potassium Channels, drug effects, genetics, Potassium Channels, Tandem Pore Domain, Receptors, Neurotransmitter

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechano-sensitive and fatty acid-activated K(+) belong to the structural class of K(+) channel with two pore domains. Here, we report the isolation and the characterization of a novel member of this family. This channel, called TREK2, is closely related to TREK1 (78% of homology). Its gene is located on chromosome 14q31. TREK2 is abundantly expressed in pancreas and kidney and to a lower level in brain, testis, colon, and small intestine. In the central nervous system, TREK2 has a widespread distribution with the highest levels of expression in cerebellum, occipital lobe, putamen, and thalamus. In transfected cells, TREK2 produces rapidly activating and non-inactivating outward rectifier K(+) currents. The single-channel conductance is 100 picosiemens at +40 mV in 150 mm K(+). The currents can be strongly stimulated by polyunsaturated fatty acid such as arachidonic, docosahexaenoic, and linoleic acids and by lysophosphatidylcholine. The channel is also activated by acidification of the intracellular medium. TREK2 is blocked by application of intracellular cAMP. As with TREK1, TREK2 is activated by the volatile general anesthetics chloroform, halothane, and isoflurane and by the neuroprotective agent riluzole. TREK2 can be positively or negatively regulated by a variety of neurotransmitter receptors. Stimulation of the G(s)-coupled receptor 5HT4sR or the G(q)-coupled receptor mGluR1 inhibits channel activity, whereas activation of the G(i)-coupled receptor mGluR2 increases TREK2 currents. These multiple types of regulations suggest that TREK2 plays an important role as a target of neurotransmitter action.

          Related collections

          Author and article information

          Comments

          Comment on this article