18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dengue Virus Infection of Blood–Brain Barrier Cells: Consequences of Severe Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood–brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.

          Related collections

          Most cited references211

          • Record: found
          • Abstract: found
          • Article: not found

          Astrocyte-endothelial interactions at the blood-brain barrier.

          The blood-brain barrier, which is formed by the endothelial cells that line cerebral microvessels, has an important role in maintaining a precisely regulated microenvironment for reliable neuronal signalling. At present, there is great interest in the association of brain microvessels, astrocytes and neurons to form functional 'neurovascular units', and recent studies have highlighted the importance of brain endothelial cells in this modular organization. Here, we explore specific interactions between the brain endothelium, astrocytes and neurons that may regulate blood-brain barrier function. An understanding of how these interactions are disturbed in pathological conditions could lead to the development of new protective and restorative therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GFAP in health and disease.

            Glial fibrillary acidic protein (GFAP) is the main intermediate filament protein in mature astrocytes, but also an important component of the cytoskeleton in astrocytes during development. Major recent developments in astrocyte biology and the discovery of novel intermediate filament functions enticed the interest in the function of GFAP. The discovery of various GFAP splice variants gave an additional boost to explore this protein in more detail. The structural role of GFAP in astrocytes has been widely accepted for a long time, but over the years, GFAP has been shown to be involved in astrocyte functions, which are important during regeneration, synaptic plasticity and reactive gliosis. Moreover, different subpopulations of astrocytes have been identified, which are likely to have distinctive tasks in brain physiology and pathology, and which are not only classified by their spatial and temporal appearance, but also by their specific expression of intermediate filaments, including distinct GFAP isoforms. The presence of these isoforms enhances the complexity of the astrocyte cytoskeleton and is likely to underlie subtype specific functions. In this review we discuss the versatility of the GFAP cytoskeletal network from gene to function with a focus on astrocytes during human brain development, aging and disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dengue virus pathogenesis: an integrated view.

              Much remains to be learned about the pathogenesis of the different manifestations of dengue virus (DENV) infections in humans. They may range from subclinical infection to dengue fever, dengue hemorrhagic fever (DHF), and eventually dengue shock syndrome (DSS). As both cell tropism and tissue tropism of DENV are considered major determinants in the pathogenesis of dengue, there is a critical need for adequate tropism assays, animal models, and human autopsy data. More than 50 years of research on dengue has resulted in a host of literature, which strongly suggests that the pathogenesis of DHF and DSS involves viral virulence factors and detrimental host responses, collectively resulting in abnormal hemostasis and increased vascular permeability. Differential targeting of specific vascular beds is likely to trigger the localized vascular hyperpermeability underlying DSS. A personalized approach to the study of pathogenesis will elucidate the basis of individual risk for development of DHF and DSS as well as identify the genetic and environmental bases for differences in risk for development of severe disease.
                Bookmark

                Author and article information

                Contributors
                URI : http://loop.frontiersin.org/people/227288/overview
                URI : http://loop.frontiersin.org/people/591945/overview
                URI : http://loop.frontiersin.org/people/618715/overview
                URI : http://loop.frontiersin.org/people/651184/overview
                URI : http://loop.frontiersin.org/people/757111/overview
                URI : http://loop.frontiersin.org/people/757116/overview
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                26 June 2019
                2019
                : 10
                : 1435
                Affiliations
                Laboratorio de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque , Bogotá, Colombia
                Author notes

                Edited by: Gerald Alan Campbell, The University of Texas Medical Branch at Galveston, United States

                Reviewed by: Erna Geessien Kroon, Universidade Federal de Minas Gerais (UFMG), Brazil; Vanessa V. Sarathy, The University of Texas Medical Branch at Galveston, United States

                *Correspondence: Myriam L. Velandia-Romero, mlvelandiaro@ 123456gmail.com

                Present address: Myriam L. Velandia-Romero, Grupo de Virologia, Universidad El Bosque, Bogotá, Colombia

                This article was submitted to Infectious Diseases, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01435
                6606788
                31293558
                0d76349f-71a1-42fa-a8b2-2413ecd45333
                Copyright © 2019 Calderón-Peláez, Velandia-Romero, Bastidas-Legarda, Beltrán, Camacho-Ortega and Castellanos.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 December 2018
                : 06 June 2019
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 251, Pages: 15, Words: 0
                Categories
                Microbiology
                Review

                Microbiology & Virology
                blood–brain barrier cells,breakdown,severe dengue,neurological manifestations,pathogenesis

                Comments

                Comment on this article