5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative Analysis of Metallographic Image Using Attention-Aware Deep Neural Networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a detection tool to identify metal or alloy, metallographic quantitative analysis has received increasing attention for its ability to evaluate quality control and reveal mechanical properties. The detection procedure is mainly operated manually to locate and characterize the constitution in metallographic images. The automatic detection is still a challenge even with the emergence of several excellent models. Benefiting from the development of deep learning, with regard to two different metallurgical structural steel image datasets, we propose two attention-aware deep neural networks, Modified Attention U-Net (MAUNet) and Self-adaptive Attention-aware Soft Anchor-Point Detector (SASAPD), to identify structures and evaluate their performance. Specifically, in the case of analyzing single-phase metallographic image, MAUNet investigates the difference between low-frequency and high-frequency and prevents duplication of low-resolution information in skip connection used in an U-Net like structure, and incorporates spatial-channel attention module with the decoder to enhance interpretability of features. In the case of analyzing multi-phase metallographic image, SASAPD explores and ranks the importance of anchor points, forming soft-weighted samples in subsequent loss design, and self-adaptively evaluates the contributions of attention-aware pyramid features to assist in detecting elements in different sizes. Extensive experiments on the above two datasets demonstrate the superiority and effectiveness of our two deep neural networks compared to state-of-the-art models on different metrics.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

          State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

            In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inverse molecular design using machine learning: Generative models for matter engineering

              The discovery of new materials can bring enormous societal and technological progress. In this context, exploring completely the large space of potential materials is computationally intractable. Here, we review methods for achieving inverse design, which aims to discover tailored materials from the starting point of a particular desired functionality. Recent advances from the rapidly growing field of artificial intelligence, mostly from the subfield of machine learning, have resulted in a fertile exchange of ideas, where approaches to inverse molecular design are being proposed and employed at a rapid pace. Among these, deep generative models have been applied to numerous classes of materials: rational design of prospective drugs, synthetic routes to organic compounds, and optimization of photovoltaics and redox flow batteries, as well as a variety of other solid-state materials.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                23 December 2020
                January 2021
                : 21
                : 1
                : 43
                Affiliations
                [1 ]School of Software, Xi’an Jiaotong University, Xi’an 710054, China; yuewan@ 123456stu.xjtu.edu.cn (Y.Z.); zhangmz99@ 123456stu.xjtu.edu.cn (M.Z.); alitongxue@ 123456stu.xjtu.edu.cn (M.W.); xjtuwujiangxu@ 123456stu.xjtu.edu.cn (W.X.); w1830768174@ 123456stu.xjtu.edu.cn (C.W.); sy0517@ 123456stu.xjtu.edu.cn (Y.S.)
                [2 ]State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China; erin1989@ 123456xjtu.edu.cn
                Author notes
                [* ]Correspondence: belonxu@ 123456zju.edu.cn ; Tel.: +86-150-2918-2592
                Author information
                https://orcid.org/0000-0003-3111-2518
                Article
                sensors-21-00043
                10.3390/s21010043
                7796035
                33374842
                0d77ac5c-f4f7-4869-967e-de920a2785d8
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 November 2020
                : 20 December 2020
                Categories
                Article

                Biomedical engineering
                metallographic analysis,image segmentation,object recognition,attention mechanism

                Comments

                Comment on this article