17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.

          Related collections

          Most cited references207

          • Record: found
          • Abstract: found
          • Article: not found

          A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome.

          Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000-15,000 births. Affected females develop normally for 6-18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the X-linked gene MECP2 (refs. 3-12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rational design and characterization of a Rac GTPase-specific small molecule inhibitor.

            The signaling pathways mediated by Rho family GTPases have been implicated in many aspects of cell biology. The specificity of the pathways is achieved in part by the selective interaction between Dbl family guanine nucleotide exchange factors (GEFs) and their Rho GTPase substrates. Here, we report a first-generation small-molecule inhibitor of Rac GTPase targeting Rac activation by GEF. The chemical compound NSC23766 was identified by a structure-based virtual screening of compounds that fit into a surface groove of Rac1 known to be critical for GEF specification. In vitro it could effectively inhibit Rac1 binding and activation by the Rac-specific GEF Trio or Tiam1 in a dose-dependent manner without interfering with the closely related Cdc42 or RhoA binding or activation by their respective GEFs or with Rac1 interaction with BcrGAP or effector PAK1. In cells, it potently blocked serum or platelet-derived growth factor-induced Rac1 activation and lamellipodia formation without affecting the activity of endogenous Cdc42 or RhoA. Moreover, this compound reduced Trio or Tiam1 but not Vav, Lbc, Intersectin, or a constitutively active Rac1 mutant-stimulated cell growth and suppressed Trio, Tiam1, or Ras-induced cell transformation. When applied to human prostate cancer PC-3 cells, it was able to inhibit the proliferation, anchorage-independent growth and invasion phenotypes that require the endogenous Rac1 activity. Thus, NSC23766 constitutes a Rac-specific small-molecule inhibitor that could be useful to study the role of Rac in various cellular functions and to reverse tumor cell phenotypes associated with Rac deregulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity.

              Recent evidence suggests that neuronal plasticity plays an important role in the recovery from depression. Antidepressant drugs and electroconvulsive shock treatment increase the expression of several molecules, which are associated with neuronal plasticity, in particular the neurotrophin BDNF and its receptor TrkB. Furthermore, these treatments increase neurogenesis and synaptic numbers in several brain areas. Conversely, depression, at least in its severe form, is associated with reduced volumes of the hippocampus and prefrontal cortex and in at least some cases these neurodegenerative signs can be attenuated by successful treatment. Such observations suggest a central role for neuronal plasticity in depression and the antidepressant effect, and also implicate BDNF signaling as a mediator of this plasticity. The antidepressant fluoxetine can reactivate developmental-like neuronal plasticity in the adult visual cortex, which, under appropriate environmental guidance, leads to the rewiring of a developmentally dysfunctional neural network. These observations suggest that the simple form of the neurotrophic hypothesis of depression, namely, that deficient levels of neurotrophic support underlies mood disorders and increases in these neurotrophic factors to normal levels brings about mood recovery, may not sufficiently explain the complex process of recovery from depression. This review discusses recent data on the role of BDNF and its receptors in depression and the antidepressant response and suggests a model whereby the effects of antidepressant treatments could be explained by a reactivation of activity-dependent and BDNF-mediated cortical plasticity, which in turn leads to the adjustment of neuronal networks to better adapt to environmental challenges.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                20 June 2018
                June 2018
                : 19
                : 6
                : 1821
                Affiliations
                [1 ]Department Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Turin, Italy; valentina.zamboni@ 123456unito.it (V.Z.); rebecca.jones@ 123456edu.unito.it (R.J.); alessandro.umbach@ 123456edu.unito.it (A.U.); alessandra.ammoni@ 123456edu.unito.it (A.A.); emilio.hirsch@ 123456unito.it (E.H.)
                [2 ]National Research Council (CNR) Institute for Neuroscience, Via Luigi Vanvitelli, 32, I-20129 Milan, Italy; m.passafaro@ 123456in.cnr.it
                Author notes
                [* ]Correspondence: giorgioroberto.merlo@ 123456unito.it ; Tel.: +39-011-670-6449; Fax: +39-011-670-6432
                Author information
                https://orcid.org/0000-0002-9073-6024
                Article
                ijms-19-01821
                10.3390/ijms19061821
                6032284
                29925821
                0d791fc9-454c-4083-a2ce-5eabb892a8d9
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 May 2018
                : 16 June 2018
                Categories
                Review

                Molecular biology
                rhoa,rac1,cdc42,intellectual disability,neuronal networks,gtpase pathway
                Molecular biology
                rhoa, rac1, cdc42, intellectual disability, neuronal networks, gtpase pathway

                Comments

                Comment on this article