9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of neuromedin U precursor-related peptide and its possible role in the regulation of prolactin release

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The discovery of neuropeptides provides insights into the regulation of physiological processes. The precursor for the neuropeptide neuromedin U contains multiple consensus sequences for proteolytic processing, suggesting that this precursor might generate additional peptides. We performed immunoaffinity chromatography of rat brain extracts and consequently identified such a product, which we designated neuromedin U precursor-related peptide (NURP). In rat brain, NURP was present as two mature peptides of 33 and 36 residues. Radioimmunoassays revealed NURP immunoreactivity in the pituitary, small intestine, and brain of rats, with the most intense reactivity in the pituitary. Intracerebroventricular administration of NURP to both male and female rats robustly increased plasma concentrations of prolactin but not of other anterior pituitary hormones. In contrast, NURP failed to stimulate prolactin release from dispersed anterior pituitary cells. Pretreatment of rats with bromocriptine, a dopamine receptor agonist, blocked the prolactin-releasing activity of NURP. In rats pretreated with the antagonist sulpiride, intracerebroventricular administration of NURP did not increase plasma prolactin concentrations more than administration of saline. These data suggest that NURP induces prolactin release by acting indirectly on the pituitary; dopamine from the hypothalamus, which inhibits prolactin release, may be involved in this activity of NURP.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue.

          Ghrelin, a novel peptide purified from stomach, is the endogenous ligand for the growth hormone secretagogue receptor and has potent growth hormone-releasing activity. The Ser3 residue of ghrelin is modified by n-octanoic acid, a modification necessary for hormonal activity. We established two ghrelin-specific radioimmunoassays; one recognizes the octanoyl-modified portion and another the C-terminal portion of ghrelin. Using these radioimmunoassay systems, we found that two major molecular forms exist-ghrelin and des-n-octanoyl ghrelin. While ghrelin activates growth-hormone secretagogue (GHS) receptor-expressing cells, the nonmodified des-n-octanyl form of ghrelin, designated as des-acyl ghrelin, does not. In addition to these findings, our radioimmunoassay systems also revealed high concentrations of ghrelin in the stomach and small intestine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals.

            Only a few RFamide peptides have been identified in mammals, although they have been abundantly found in invertebrates. Here we report the identification of a human gene that encodes at least three RFamide-related peptides, hRFRP-1-3. Cells transfected with a seven-transmembrane-domain receptor, OT7T022, specifically respond to synthetic hRFRP-1 and hRFRP-3 but not to hRFRP-2. RFRP and OT7T022 mRNAs are expressed in particular regions of the rat hypothalamus, and intracerebroventricular administration of hRFRP-1 increases prolactin secretion in rats. Our results indicate that a variety of RFamide-related peptides may exist and function in mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of receptors for neuromedin U and its role in feeding.

              Neuromedin U (NMU) is a neuropeptide with potent activity on smooth muscle which was isolated first from porcine spinal cord and later from other species. It is widely distributed in the gut and central nervous system. Peripheral activities of NMU include stimulation of smooth muscle, increase of blood pressure, alteration of ion transport in the gut, control of local blood flow and regulation of adrenocortical function. An NMU receptor has not been molecularly identified. Here we show that the previously described orphan G-protein-coupled receptor FM-3 (ref. 15) and a newly discovered one (FM-4) are cognate receptors for NMU. FM-3, designated NMU1R, is abundantly expressed in peripheral tissues whereas FM-4, designated NMU2R, is expressed in specific regions of the brain. NMU is expressed in the ventromedial hypothalamus in the rat brain, and its level is significantly reduced following fasting. Intracerebroventricular administration of NMU markedly suppresses food intake in rats. These findings provide a molecular basis for the biochemical activities of NMU and may indicate that NMU is involved in the central control of feeding.
                Bookmark

                Author and article information

                Contributors
                kangawa@ri.ncvc.go.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 September 2017
                5 September 2017
                2017
                : 7
                : 10468
                Affiliations
                [1 ]ISNI 0000 0004 0378 8307, GRID grid.410796.d, Department of Biochemistry, , National Cerebral and Cardiovascular Center Research Institute, ; Suita Osaka, 565-8565 Japan
                [2 ]ISNI 0000 0001 0657 3887, GRID grid.410849.0, Division of Searching and Identification of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, ; Miyazaki, Miyazaki 889-1692 Japan
                [3 ]ISNI 0000 0001 0657 3887, GRID grid.410849.0, Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, ; Miyazaki, Miyazaki 889-1692 Japan
                [4 ]ISNI 0000 0001 0657 3887, GRID grid.410849.0, Department of Veterinary Physiology, , Faculty of Agriculture, University of Miyazaki, ; Miyazaki, Miyazaki 889-2192 Japan
                Article
                10319
                10.1038/s41598-017-10319-9
                5585327
                28874765
                0d799ff7-8701-4d2a-b617-c84b17b83919
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 April 2017
                : 1 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article