85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The RosettaDock server for local protein–protein docking

      research-article
      1 , 1 , 2 , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The RosettaDock server ( http://rosettadock.graylab.jhu.edu) identifies low-energy conformations of a protein–protein interaction near a given starting configuration by optimizing rigid-body orientation and side-chain conformations. The server requires two protein structures as inputs and a starting location for the search. RosettaDock generates 1000 independent structures, and the server returns pictures, coordinate files and detailed scoring information for the 10 top-scoring models. A plot of the total energy of each of the 1000 models created shows the presence or absence of an energetic binding funnel. RosettaDock has been validated on the docking benchmark set and through the Critical Assessment of PRedicted Interactions blind prediction challenge.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          ZDOCK: an initial-stage protein-docking algorithm.

          The development of scoring functions is of great importance to protein docking. Here we present a new scoring function for the initial stage of unbound docking. It combines our recently developed pairwise shape complementarity with desolvation and electrostatics. We compare this scoring function with three other functions on a large benchmark of 49 nonredundant test cases and show its superior performance, especially for the antibody-antigen category of test cases. For 44 test cases (90% of the benchmark), we can retain at least one near-native structure within the top 2000 predictions at the 6 degrees rotational sampling density, with an average of 52 near-native structures per test case. The remaining five difficult test cases can be explained by a combination of poor binding affinity, large backbone conformational changes, and our algorithm's strong tendency for identifying large concave binding pockets. All four scoring functions have been integrated into our Fast Fourier Transform based docking algorithm ZDOCK, which is freely available to academic users at http://zlab.bu.edu/~ rong/dock. Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ClusPro: an automated docking and discrimination method for the prediction of protein complexes.

            Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. We have developed a fast algorithm for filtering docked conformations with good surface complementarity, and ranking them based on their clustering properties. The free energy filters select complexes with lowest desolvation and electrostatic energies. Clustering is then used to smooth the local minima and to select the ones with the broadest energy wells-a property associated with the free energy at the binding site. The robustness of the method was tested on sets of 2000 docked conformations generated for 48 pairs of interacting proteins. In 31 of these cases, the top 10 predictions include at least one near-native complex, with an average RMSD of 5 A from the native structure. The docking and discrimination method also provides good results for a number of complexes that were used as targets in the Critical Assessment of PRedictions of Interactions experiment. The fully automated docking and discrimination server ClusPro can be found at http://structure.bu.edu
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian statistical analysis of protein side-chain rotamer preferences.

              We present a Bayesian statistical analysis of the conformations of side chains in proteins from the Protein Data Bank. This is an extension of the backbone-dependent rotamer library, and includes rotamer populations and average chi angles for a full range of phi, psi values. The Bayesian analysis used here provides a rigorous statistical method for taking account of varying amounts of data. Bayesian statistics requires the assumption of a prior distribution for parameters over their range of possible values. This prior distribution can be derived from previous data or from pooling some of the present data. The prior distribution is combined with the data to form the posterior distribution, which is a compromise between the prior distribution and the data. For the chi 2, chi 3, and chi 4 rotamer prior distributions, we assume that the probability of each rotamer type is dependent only on the previous chi rotamer in the chain. For the backbone-dependence of the chi 1 rotamers, we derive prior distributions from the product of the phi-dependent and psi-dependent probabilities. Molecular mechanics calculations with the CHARMM22 potential show a strong similarity with the experimental distributions, indicating that proteins attain their lowest energy rotamers with respect to local backbone-side-chain interactions. The new library is suitable for use in homology modeling, protein folding simulations, and the refinement of X-ray and NMR structures.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                1 July 2008
                28 April 2008
                28 April 2008
                : 36
                : Web Server issue
                : W233-W238
                Affiliations
                1Department of Chemical and Biomolecular Engineering and 2Program in Molecular and Computational Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
                Author notes
                *To whom correspondence should be addressed. +1 410 516 5313+1 410 516 5510 jgray@ 123456jhu.edu
                Article
                gkn216
                10.1093/nar/gkn216
                2447798
                18442991
                0d8cf07e-b289-4b7c-a94f-6312b65f17ae
                © 2008 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 January 2008
                : 25 March 2008
                : 9 April 2008
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article