29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Cytokinesis controls the proper segregation of nuclear and cytoplasmic materials at the end of cell division. The chromosomal passenger complex (CPC) has been proposed to monitor the final separation of the two daughter cells at the end of cytokinesis in order to prevent cell abscission in the presence of DNA at the cleavage site, but the precise molecular basis for this is unclear. Recent studies indicate that abscission could be mediated by the assembly of filaments comprising components of the endosomal sorting complex required for transport-III (ESCRT-III). Here, we show that the CPC subunit Borealin interacts directly with the Snf7 components of ESCRT-III in both Drosophila and human cells. Moreover, we find that the CPC's catalytic subunit, Aurora B kinase, phosphorylates one of the three human Snf7 paralogues—CHMP4C—in its C-terminal tail, a region known to regulate its ability to form polymers and associate with membranes. Phosphorylation at these sites appears essential for CHMP4C function because their mutation leads to cytokinesis defects. We propose that CPC controls abscission timing through inhibition of ESCRT-III Snf7 polymerization and membrane association using two concurrent mechanisms: interaction of its Borealin component with Snf7 proteins and phosphorylation of CHMP4C by Aurora B.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores

          The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosomal passengers: conducting cell division.

            Mitosis and meiosis are remarkable processes during which cells undergo profound changes in their structure and physiology. These events are orchestrated with a precision that is worthy of a classical symphony, with different activities being switched on and off at precise times and locations throughout the cell. One essential 'conductor' of this symphony is the chromosomal passenger complex (CPC), which comprises Aurora-B protein kinase, the inner centromere protein INCENP, survivin and borealin (also known as Dasra-B). Studies of the CPC are providing insights into its functions, which range from chromosome-microtubule interactions to sister chromatid cohesion to cytokinesis, and constitute one of the most dynamic areas of ongoing mitosis and meiosis research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aurora B-mediated abscission checkpoint protects against tetraploidization.

              Genomic abnormalities are often seen in tumor cells, and tetraploidization, which results from failures during cytokinesis, is presumed to be an early step in cancer formation. Here, we report a cell division control mechanism that prevents tetraploidization in human cells with perturbed chromosome segregation. First, we found that Aurora B inactivation promotes completion of cytokinesis by abscission. Chromosome bridges sustained Aurora B activity to posttelophase stages and thereby delayed abscission at stabilized intercellular canals. This was essential to suppress tetraploidization by furrow regression in a pathway further involving the phosphorylation of mitotic kinesin-like protein 1 (Mklp1). We propose that Aurora B is part of a sensor that responds to unsegregated chromatin at the cleavage site. Our study provides evidence that in human cells abscission is coordinated with the completion of chromosome segregation to protect against tetraploidization by furrow regression.
                Bookmark

                Author and article information

                Journal
                Open Biol
                Open Biol
                RSOB
                royopenbio
                Open Biology
                The Royal Society
                2046-2441
                May 2012
                May 2012
                : 2
                : 5
                Affiliations
                [1 ]Department of Pathology, University of Cambridge , Tennis Court Road, Cambridge CB2 1QP, UK
                [2 ]Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge , Downing Street, Cambridge CB2 3EH, UK
                Author notes
                [†]

                These authors contributed equally to this work.

                Article
                rsob120070
                10.1098/rsob.120070
                3376741
                22724069

                © 2012 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.

                Product
                Categories
                1001
                33
                129
                15
                Research
                Research Article
                Custom metadata
                May 2012

                Life sciences

                chmp4, abscission, aurora b kinase, borealin, shrb

                Comments

                Comment on this article