26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Confirmatory factor analysis of the effect of daily-living on the happiness of community-dwelling older adults in Chile

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examined the effect of the human-functioning dimension on happiness among community-dwelling older adults (OAs) in Chile. Questionnaires were used for data collection from a sample of 785 OAs of both sexes attending healthcare institutions. Exploratory factor analysis was performed using parallel analysis and oblique rotation. Confirmatory factor analysis and structural equation modeling were conducted using the maximum likelihood and unweighted least squares methods. Goodness-of-fit analyses were performed by considering absolute and respective incremental fit indices. The relationships between the functioning and happiness factors were all significant at the 1% level, indicating that functioning impacts happiness. The ratios of the variances between both constructs were identical to those of the covariances, indicating consistency between the models, with similarities and equalities in the estimation of their parameters. The modeling confirms a direct relationship between activities of daily living functioning and happiness. Given that a lack of functioning significantly affects OAs’ happiness and quality of life, this relationship is consistent with the available theory. These findings may contribute to the formulation of social and health policies regarding OAs in Chile and other Latin American countries.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          El Análisis Factorial Exploratorio de los Ítems: una guía práctica, revisada y actualizada

          El Análisis Factorial Exploratorio es una de las técnicas más usadas en el desarrollo, validación y adaptación de instrumentos de medida psicológicos. Su uso se extendió durante los años 60 y ha ido creciendo de forma exponencial al ritmo que el avance de la informática ha permitido. Los criterios empleados en su uso, como es natural, también han evolucionado. Pero los investigadores interesados en asuntos sustantivos que utilizan rutinariamente esta técnica permanecen en muchos casos ignorantes de todo ello. En las últimas décadas numerosos trabajos han denunciado esta situación. La necesidad de actualizar los criterios clásicos para incorporar aquellos más adecuados es una necesidad urgente para hacer investigación de calidad. En este trabajo se revisan los criterios clásicos y, según el caso, se sustituyen o se complementan con otros más actuales. El objetivo es ofrecer al investigador aplicado interesado una guía actualizada acerca de cómo realizar un Análisis Factorial Exploratorio consonante con la psicometría post-Little Jiffy. Esta revisión y la guía con las recomendaciones correspondientes se han articulado en cuatro grandes bloques: 1) el tipo de datos y la matriz de asociación, 2) el método de estimación de factores, 3) el número de factores a retener, y 4) el método de rotación y asignación de ítems. Al final del artículo hemos incluido una versión breve de la guía.
            • Record: found
            • Abstract: not found
            • Article: not found

            Studies of Illness in the Aged

              • Record: found
              • Abstract: found
              • Article: not found

              Evaluating bifactor models: Calculating and interpreting statistical indices.

              Bifactor measurement models are increasingly being applied to personality and psychopathology measures (Reise, 2012). In this work, authors generally have emphasized model fit, and their typical conclusion is that a bifactor model provides a superior fit relative to alternative subordinate models. Often unexplored, however, are important statistical indices that can substantially improve the psychometric analysis of a measure. We provide a review of the particularly valuable statistical indices one can derive from bifactor models. They include omega reliability coefficients, factor determinacy, construct reliability, explained common variance, and percentage of uncontaminated correlations. We describe how these indices can be calculated and used to inform: (a) the quality of unit-weighted total and subscale score composites, as well as factor score estimates, and (b) the specification and quality of a measurement model in structural equation modeling. (PsycINFO Database Record

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                15 March 2024
                30 March 2024
                15 March 2024
                : 10
                : 6
                : e28230
                Affiliations
                [a ]Faculty of Business and Economics, Interuniversity Center for Healthy Aging, Universidad de Talca. C. P, 3465548 Talca, Chile
                [b ]Faculty of Health Sciences. Universidad de Talca, C. P, 3465548, Talca, Chile
                [c ]Interuniversity Center for Healthy Aging RED21993, Universidad de Valparaiso, Chile
                Author notes
                [* ]Corresponding author. Faculty of Health Sciences. Universidad de Talca, Talca, Chile. eplaza@ 123456utalca.cl
                Article
                S2405-8440(24)04261-0 e28230
                10.1016/j.heliyon.2024.e28230
                10979233
                38560665
                0da03cd3-3e47-4f96-a7c8-0fd6b03c7e67
                © 2024 The Authors

                This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

                History
                : 2 December 2022
                : 4 March 2024
                : 13 March 2024
                Categories
                Research Article

                functioning,happiness,older adults,structural modeling
                functioning, happiness, older adults, structural modeling

                Comments

                Comment on this article

                Related Documents Log