49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aurora-A promotes chemoresistance in hepatocelluar carcinoma by targeting NF-kappaB/microRNA-21/PTEN signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is highly resistant to chemotherapy. Previously, we have shown that Aurora-A mRNA is upregulated in HCC cells or tissues and silencing of Aurora-A using small interfering RNA (siRNA) decreases growth and enhances apoptosis in HCC cells. However, the clinical significance of Aurora-A protein expression in HCC and association between Aurora-A expression and HCC chemoresistance is unclear. Here, we showed that Aurora-A protein is upregulated in HCC tissues and significantly correlated with recurrence-free and overall survival of patients and multivariate analysis indicated that immunostaining of Aurora-A will be an independent prognostic factor for patients. Silencing of Aurora-A significantly increased the chemosensitivity of HCC cells both in vitro and in vivo, while overexpression of Aurora-A induced the opposite effects. Furthermore, overexpression of Aurora-A reduces chemotherapy-induced apoptosis by promoting microRNA-21 expression, which negatively regulates PTEN and then inhibits caspase-3-mediated apoptosis induction. Mechanically, we demonstrated that Aurora-A promotes expression of nuclear Ikappaβ-alpha (Iκβα) protein and enhances NF-kappa B (NF-κB) activity, thus promotes the transcription of miR-21. This study first reported the involvement of Aurora-A/NF-κB/miR-21/PTEN/Akt signaling axis in chemoresistance of HCC cells, suggesting that targeting this signaling pathway would be helpful as a therapeutic strategy for the reversal of chemoresistance in HCC.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Aurora-A - a guardian of poles.

          The three human homologues of Aurora kinases (A, B and C) are essential for proper execution of various mitotic events and are important for maintaining genomic integrity. Aurora-A is mainly localized at spindle poles and the mitotic spindle during mitosis, where it regulates the functions of centrosomes, spindles and kinetochores required for proper mitotic progression. Recent studies have revealed that Aurora-A is frequently overexpressed in various cancer cells, indicating its involvement in tumorigenesis. What are the normal physiological roles of Aurora-A, how are these regulated and how might the enzyme function during tumorigenesis?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aurora A kinase (AURKA) in normal and pathological cell division.

            Temporally and spatially controlled activation of the Aurora A kinase (AURKA) regulates centrosome maturation, entry into mitosis, formation and function of the bipolar spindle, and cytokinesis. Genetic amplification and mRNA and protein overexpression of Aurora A are common in many types of solid tumor, and associated with aneuploidy, supernumerary centrosomes, defective mitotic spindles, and resistance to apoptosis. These properties have led Aurora A to be considered a high-value target for development of cancer therapeutics, with multiple agents currently in early-phase clinical trials. More recently, identification of additional, non-mitotic functions and means of activation of Aurora A during interphase neurite elongation and ciliary resorption have significantly expanded our understanding of its function, and may offer insights into the clinical performance of Aurora A inhibitors. Here we review the mitotic and non-mitotic functions of Aurora A, discuss Aurora A regulation in the context of protein structural information, and evaluate progress in understanding and inhibiting Aurora A in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PI(3)king apart PTEN's role in cancer.

              The tumor suppressor phosphatase and tensin homolog (PTEN) is a nonredundant phosphatase, counteracting one of the most critical cancer-promoting pathways: the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. In addition to the canonical function of dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PIP3), recent studies showed the intriguing roles of PTEN in regulating genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration and/or metastasis. Clinically, PTEN mutations and deficiencies are prevalent in many types of human cancers. Severe PTEN deficiency is also associated with advanced tumor stage and therapeutic resistance, such as the resistance to trastuzumab, an anti-HER2 therapy. Currently, targeting the deregulated PI3K/PTEN-Akt signaling axis has emerged as one of the major tenets in anticancer drug development. In this review, we highlight our current knowledge of PTEN function and the recent discoveries in dissecting the PTEN signaling pathway. The deregulations of PTEN in cancers, clinical lessons, and new prospects of rationally designed PI3K/Akt-targeted therapy for effective cancer treatment are also discussed.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                December 2014
                4 November 2014
                : 5
                : 24
                : 12916-12935
                Affiliations
                1 Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
                2 Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
                3 Department of Hepatobiliary Surgery, First Hospital Affiliated to the Chinese PLA General Hospital, Fucheng, Haidian District, Beijing, China
                Author notes
                Correspondence to: Rui Wang, wangrui218@ 123456163.com
                Article
                10.18632/oncotarget.2682
                4350360
                25428915
                0db2a794-0c14-4009-b1e1-5c807a78c221
                Copyright: © 2014 Zhang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 August 2014
                : 4 November 2014
                Categories
                Research Paper

                Oncology & Radiotherapy
                hepatocellular carcinoma,aurora-a,nf-kappab,microrna-21,pten,chemoresistance,apoptosis

                Comments

                Comment on this article