0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Role of Carbon Monoxide and Biliverdin in Renal Ischemia/Reperfusion Injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heme oxygenase (HO) isoforms catalyze the conversion of heme to carbon monoxide (CO) and biliverdin/bilirubin with a concurrent release of iron. There is strong evidence that HO activity and products play a major role in renoprotection, however the exact molecular mechanisms underlying the beneficial effects exerted by this pathway are not fully understood. This review is aimed at illustrating the possible mechanism/s by which HO is renoprotective in the context of ischemia/reperfusion. We will first analyze the effects of exogenous administration of bilirubin/biliverdin and CO and then describe their biological activities once generated endogenously following stimulation of the HO pathway by either pharmacological means or gene targeting-mediated approaches.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes

           B Bennett,  R Malefyt,  la De (1991)
          In the present study we demonstrate that human monocytes activated by lipopolysaccharides (LPS) were able to produce high levels of interleukin 10 (IL-10), previously designated cytokine synthesis inhibitory factor (CSIF), in a dose dependent fashion. IL-10 was detectable 7 h after activation of the monocytes and maximal levels of IL-10 production were observed after 24-48 h. These kinetics indicated that the production of IL-10 by human monocytes was relatively late as compared to the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, tumor necrosis factor alpha (TNF alpha), and granulocyte colony-stimulating factor (G-CSF), which were all secreted at high levels 4-8 h after activation. The production of IL-10 by LPS activated monocytes was, similar to that of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF, inhibited by IL-4. Furthermore we demonstrate here that IL-10, added to monocytes, activated by interferon gamma (IFN-gamma), LPS, or combinations of LPS and IFN-gamma at the onset of the cultures, strongly inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF at the transcriptional level. Viral-IL-10, which has similar biological activities on human cells, also inhibited the production of TNF alpha and GM-CSF by monocytes following LPS activation. Activation of monocytes by LPS in the presence of neutralizing anti-IL-10 monoclonal antibodies resulted in the production of higher amounts of cytokines relative to LPS treatment alone, indicating that endogenously produced IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF. In addition, IL-10 had autoregulatory effects since it strongly inhibited IL-10 mRNA synthesis in LPS activated monocytes. Furthermore, endogenously produced IL-10 was found to be responsible for the reduction in class II major histocompatibility complex (MHC) expression following activation of monocytes with LPS. Taken together our results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway.

            The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress. The anti-inflammatory properties of heme oxygenase-1 may serve as a basis for this cytoprotection. We demonstrate here that carbon monoxide, a by-product of heme catabolism by heme oxygenase, mediates potent anti-inflammatory effects. Both in vivo and in vitro, carbon monoxide at low concentrations differentially and selectively inhibited the expression of lipopolysaccharide-induced pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and macrophage inflammatory protein-1beta and increased the lipopolysaccharide-induced expression of the anti-inflammatory cytokine interleukin-10. Carbon monoxide mediated these anti-inflammatory effects not through a guanylyl cyclase-cGMP or nitric oxide pathway, but instead through a pathway involving the mitogen-activated protein kinases. These data indicate the possibility that carbon monoxide may have an important protective function in inflammatory disease states and thus has potential therapeutic uses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3.

              Carbon monoxide (CO), a reaction product of the cytoprotective gene heme oxygenase, has been shown to be protective against organ injury in a variety of models. One potential mechanism whereby CO affords cytoprotection is through its anti-apoptotic properties. Our studies show that low level, exogenous CO attenuates anoxia-reoxygenation (A-R)-induced lung endothelial cell apoptosis. Exposure of primary rat pulmonary artery endothelial cells to minimal levels of CO inhibits apoptosis and enhances phospho-p38 mitogen-activated protein kinase (MAPK) activation in A-R. Transfection of p38alpha dominant negative mutant or inhibition of p38 MAPK activity with SB203580 ablates the anti-apoptotic effects of CO in A-R. CO, through p38 MAPK, indirectly modulates caspase 3. Furthermore, we correlate our in vitro apoptosis model with an in vivo model of A-R by showing that CO can attenuate I-R injury of the lung. Taken together, our data are the first to demonstrate in models of A-R that the anti-apoptotic effects of CO are via modulation of p38 MAPK and caspase 3.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2006
                November 2006
                11 August 2006
                : 104
                : 4
                : e135-e139
                Affiliations
                aDivision of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, bDepartment of Biological Chemistry, Medicinal Chemistry and Molecular Biology, University of Catania, cG. Garibaldi Hospital, Catania, Italy; and dVascular Biology Unit, Department of Surgical Research, Northwick Park Institute for Medical Research, Harrow, UK
                Article
                94964 Nephron Exp Nephrol 2006;104:e135–e139
                10.1159/000094964
                16902317
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, References: 30, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/94964
                Categories
                Minireview

                Comments

                Comment on this article