9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      JNK/SAPK and p38 SAPK-2 Mediate Mechanical Stretch-Induced Apoptosis via Caspase-3 and -9 in NRK-52E Renal Epithelial Cells

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: In renal epithelial cells, mechanical forces produced from urinary obstruction serve as potential mediators of apoptosis by activating specific intracellular signaling pathways. In this study, we sought to further define the role of JNK and p38 SAPK-2 pathway and caspase activation in stretch-induced apoptosis. Methods: Immortalized cell lines derived from the various components of the nephron were subjected to cyclical stretch and their differential apoptotic response was assessed. Pharmacologic inhibitors and Western blot analysis were used to assess the involvement of the MAPK pathways. Caspases’ activity was assessed with ELISA and by Western blot analysis. Results: Stretch-induced apoptosis was dependent upon the cell phenotype and the degree of stretch. In NRK-52E cells, it was mediated through both JNK and p38 SAPK-2 pathways, and inhibition of either pathway reduced the degree of stretch-induced apoptosis. Stretched cells showed increased activity of caspase-3 and -9 but not -2 or -8. Stretch-induced apoptosis was modulated by inhibition of caspase-3 and to a lesser extent by caspase-9. Conclusion: These findings suggest that stretch induces apoptosis in renal epithelial cells through the specific activation of JNK/SAPK and p38 SAPK-2 pathways and is dependent on the activation of caspase-3 and -9.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitogen-activated protein kinases in apoptosis regulation.

            Cells are continuously exposed to a variety of environmental stresses and have to decide 'to be or not to be' depending on the types and strength of stress. Among the many signaling pathways that respond to stress, mitogen-activated protein kinase (MAPK) family members are crucial for the maintenance of cells. Three subfamilies of MAPKs have been identified: extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38-MAPKs. It has been originally shown that ERKs are important for cell survival, whereas JNKs and p38-MAPKs were deemed stress responsive and thus involved in apoptosis. However, the regulation of apoptosis by MAPKs is more complex than initially thought and often controversial. In this review, we discuss MAPKs in apoptosis regulation with attention to mouse genetic models and critically point out the multiple roles of MAPKs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissection of TNF Receptor 1 Effector Functions: JNK Activation Is Not Linked to Apoptosis While NF-κB Activation Prevents Cell Death

              Through its type 1 receptor (TNFR1), the cytokine TNF elicits an unusually wide range of biological responses, including inflammation, tumor necrosis, cell proliferation, differentiation, and apoptosis. We investigated how TNFR1 activates different effector functions; the protein kinase JNK, transcription factor NF-kappaB, and apoptosis. We found that the three responses are mediated through separate pathways. Recruitment of the signal transducer FADD to the TNFR1 complex mediates apoptosis but not NF-kappaB or JNK activation. Two other signal transducers, RIP and TRAF2, mediate both JNK and NF-kappaB activation. These two responses, however, diverge downstream to TRAF2. Most importantly, JNK activation is not involved in induction of apoptosis, while activation of NF-kappaB protects against TNF-induced apoptosis.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2006
                January 2006
                23 September 2005
                : 102
                : 2
                : e49-e61
                Affiliations
                aDepartment of Urology, University of California, San Francisco, San Francisco, Calif., and bUrologic Laboratory, Department of Urology, Children’s Hospital Boston, Boston, Mass., USA
                Article
                88401 Nephron Exp Nephrol 2006;102:e49–e61
                10.1159/000088401
                16179830
                0dc59982-a3e0-40ca-8afb-6f069b23fbba
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 11 February 2005
                : 11 July 2005
                Page count
                Figures: 5, References: 42, Pages: 1
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                c-Jun kinase,Renal epithelial cells,Caspases,Apoptosis,p38 stress-activated protein kinase-2,Obstruction

                Comments

                Comment on this article