11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disentangling Leucocytozoon parasite diversity in the neotropics: Descriptions of two new species and shortcomings of molecular diagnostics for leucocytozoids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Avian communities from South America harbor an extraordinary diversity of Leucocytozoon species (Haemosporida, Leucocytozoidae). Here, of 890 birds sampled, 10 (1.2%) were infected with Leucocytozoon parasites. Among them, two new species were discovered and described. Leucocytozoon grallariae sp. nov. and Leucocytozoon neotropicalis sp. nov. were found in non-migratory highland passeriforms belonging to the Grallaridae and Cotingidae, respectively. They both possess gametocytes in fusiform host cells. However, due to combining microscopic examination and molecular detection, it was revealed that these parasites were present in co-infections with other Leucocytozoon species, which gametocytes develop in roundish host cells, therefore exhibiting two highly distant parasite lineages isolated from the same samples. Remarkably, the lineages obtained by cloning the mtDNA genomes were not captured by the classic nested PCR, which amplifies a short fragment of cytochrome b gene. Phylogenetic analyses revealed that the lineages obtained by the classic nested PCR clustered with parasites possessing gametocytes in roundish host cells, while the lineages obtained by the mtDNA genome PCR protocol were closely related to Leucocytozoon parasites possessing gametocytes in fusiform host cells. These findings suggest problems with the sensitivity of the molecular protocols commonly used to detect Leucocytozoon species. A detailed analysis of the primers used in the classic nested PCR revealed a match with DNA sequences from those parasites that possess gametocytes in roundish host cells (i.e., Leucocytozoon fringillinarum), while they differ with the orthologous regions in the mtDNA genomes isolated from the samples containing the two new species. Since these are mixed infections, none of the lineages detected in this study can be assigned accurately to the new Leucocytozoon morphospecies that develops in fusiform host cells. However, phylogenetic analyses allowed us to hypothesize their most probable associations. This study highlights the need for developing detection methods to assess the diversity of Leucocytozoon parasites accurately.

          Graphical abstract

          Highlights

          • Molecular diversity of Leucocytozoon is underestimated.

          • We described two new Leucocytozoon species infecting passerines endemic of Neotropics.

          • Commonly PCR protocols failed to detect Leucocytozoon lineages from Neotropical region.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis

          For the past twenty five years the NIH family of imaging software, NIH Image and ImageJ have been pioneers as open tools for scientific image analysis. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

            We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NIH Image to ImageJ: 25 years of image analysis.

              For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Parasitol Parasites Wildl
                Int J Parasitol Parasites Wildl
                International Journal for Parasitology: Parasites and Wildlife
                Elsevier
                2213-2244
                13 May 2019
                August 2019
                13 May 2019
                : 9
                : 159-173
                Affiliations
                [a ]Universidad Nacional de Colombia - Sede Bogotá- Facultad de Ciencias - Departamento de Biología - Grupo de Investigación Caracterización Genética e Inmunología, Carrera 30 No. 45-03, Bogotá, 111321, Colombia
                [b ]Institute of Ecology, Nature Research Centre, Akademijos 2, Vilnius-21, LT, 08412, Lithuania
                [c ]Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
                [d ]Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
                Author notes
                []Corresponding author. Universidad Nacional de Colombia - Sede Bogotá- Facultad de Ciencias - Departamento de Biología - Grupo de Investigación Caracterización Genética e Inmunología, Carrera 30 No. 45-03, Bogotá, 111321, Colombia. ialottaa@ 123456unal.edu.co
                [∗∗ ]Corresponding author. nemattac@ 123456unal.edu.co
                Article
                S2213-2244(19)30021-5
                10.1016/j.ijppaw.2019.05.002
                6526250
                31193389
                0dcad420-fb2c-443d-9cb7-7c1672cbb009
                © 2019 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 30 January 2019
                : 7 May 2019
                : 7 May 2019
                Categories
                Article

                andean mountains,birds,co-infection,new species,cotingidae,grallaridae,passeriforms

                Comments

                Comment on this article