23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      On the feasibility of remote palpation using acoustic radiation force

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A method of acoustic remote palpation, capable of imaging local variations in the mechanical properties of tissue, is under investigation. In this method, focused ultrasound is used to apply localized (on the order of 2 mm3) radiation force within tissue. and the resulting tissue displacements are mapped using ultrasonic correlation based methods. The tissue displacements are inversely proportional to the stiffness of the tissue, and thus a stiffer region of tissue exhibits smaller displacements than a more compliant region. In this paper, the feasibility of remote palpation is demonstrated experimentally using breast tissue phantoms with spherical lesion inclusions, and in vitro liver samples. A single diagnostic transducer and modified ultrasonic imaging system are used to perform remote palpation. The displacement images are directly correlated to local variations in tissue stiffness with higher contrast than the corresponding B-mode images. Relationships between acoustic beam parameters, lesion characteristics and radiation force induced tissue displacement patterns are investigated and discussed. The results show promise for the clinical implementation of remote palpation.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics.

            Shear wave elasticity imaging (SWEI) is a new approach to imaging and characterizing tissue structures based on the use of shear acoustic waves remotely induced by the radiation force of a focused ultrasonic beam. SWEI provides the physician with a virtual "finger" to probe the elasticity of the internal regions of the body. In SWEI, compared to other approaches in elasticity imaging, the induced strain in the tissue can be highly localized, because the remotely induced shear waves are attenuated fully within a very limited area of tissue in the vicinity of the focal point of a focused ultrasound beam. SWEI may add a new quality to conventional ultrasonic imaging or magnetic resonance imaging. Adding shear elasticity data ("palpation information") by superimposing color-coded elasticity data over ultrasonic or magnetic resonance images may enable better differentiation of tissues and further enhance diagnosis. This article presents a physical and mathematical basis of SWEI with some experimental results of pilot studies proving feasibility of this new ultrasonic technology. A theoretical model of shear oscillations in soft biological tissue remotely induced by the radiation force of focused ultrasound is described. Experimental studies based on optical and magnetic resonance imaging detection of these shear waves are presented. Recorded spatial and temporal profiles of propagating shear waves fully confirm the results of mathematical modeling. Finally, the safety of the SWEI method is discussed, and it is shown that typical ultrasonic exposure of SWEI is significantly below the threshold of damaging effects of focused ultrasound.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elastic moduli of breast and prostate tissues under compression.

              To evaluate the dynamic range of tissue imaged by elastography, the mechanical behavior of breast and prostate tissue samples subject to compression loading has been investigated. A model for the loading was validated and used to guide the experimental design for data collection. The model allowed the use of small samples that could be considered homogeneous; this assumption was confirmed by histological analysis. The samples were tested at three strain rates to evaluate the viscoelastic nature of the material and determine the validity of modeling the tissue as an elastic material for the strain rates of interest. For loading frequencies above 1 Hz, the storage modulus accounted for over 93 percent of the complex modulus. The data show that breast fat tissue has a constant modulus over the strain range tested while the other tissues have a modulus that is dependent on the strain level. The fibrous tissue samples from the breast were found to be 1 to 2 orders of magnitude stiffer than fat tissue. Normal glandular breast tissue was found to have an elastic modulus similar to that of fat at low strain levels, but the modulus of the glandular tissue increased by an order of magnitude above fat at high strain levels. Carcinomas from the breast were stiffer than the other tissues at the higher strain level; intraductal in situ carcinomas were like fat at the low strain level and much stiffer than glandular tissue at the high strain level. Infiltrating ductal carcinomas were much stiffer than any of the other breast tissues. Normal prostate tissue has a modulus that is lower than the modulus of the prostate cancers tested. Tissue from prostate with benign prostatic hyperplasia (BPH) had modulus values significantly lower than normal tissue. There was a constant but not significant difference in the modulus of tissues taken from the anterior and posterior portions of the gland.
                Bookmark

                Author and article information

                Journal
                The Journal of the Acoustical Society of America
                The Journal of the Acoustical Society of America
                Acoustical Society of America (ASA)
                0001-4966
                July 2001
                July 2001
                : 110
                : 1
                : 625-634
                Article
                10.1121/1.1378344
                11508987
                0ddbe24b-d197-424c-9bf0-fd79a3e5ae8f
                © 2001
                History

                Comments

                Comment on this article