177
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperglycemia and insulin resistance are key players in the development of atherosclerosis and its complications. A large body of evidence suggest that metabolic abnormalities cause overproduction of reactive oxygen species (ROS). In turn, ROS, via endothelial dysfunction and inflammation, play a major role in precipitating diabetic vascular disease. A better understanding of ROS-generating pathways may provide the basis to develop novel therapeutic strategies against vascular complications in this setting. Part I of this review will focus on the most current advances in the pathophysiological mechanisms of vascular disease: (i) emerging role of endothelium in obesity-induced insulin resistance; (ii) hyperglycemia-dependent microRNAs deregulation and impairment of vascular repair capacities; (iii) alterations of coagulation, platelet reactivity, and microparticle release; (iv) epigenetic-driven transcription of ROS-generating and proinflammatory genes. Taken together these novel insights point to the development of mechanism-based therapeutic strategies as a promising option to prevent cardiovascular complications in diabetes.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.

          The goal of this study was to estimate the prevalence of diabetes and the number of people of all ages with diabetes for years 2000 and 2030. Data on diabetes prevalence by age and sex from a limited number of countries were extrapolated to all 191 World Health Organization member states and applied to United Nations' population estimates for 2000 and 2030. Urban and rural populations were considered separately for developing countries. The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The prevalence of diabetes is higher in men than women, but there are more women with diabetes than men. The urban population in developing countries is projected to double between 2000 and 2030. The most important demographic change to diabetes prevalence across the world appears to be the increase in the proportion of people >65 years of age. These findings indicate that the "diabetes epidemic" will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus

            (2002)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia

              The current goal of diabetes therapy is to reduce time-averaged mean levels of glycemia, measured as HbA1c, to prevent diabetic complications. However, HbA1c only explains <25% of the variation in risk of developing complications. Because HbA1c does not correlate with glycemic variability when adjusted for mean blood glucose, we hypothesized that transient spikes of hyperglycemia may be an HbA1c–independent risk factor for diabetic complications. We show that transient hyperglycemia induces long-lasting activating epigenetic changes in the promoter of the nuclear factor κB (NF-κB) subunit p65 in aortic endothelial cells both in vitro and in nondiabetic mice, which cause increased p65 gene expression. Both the epigenetic changes and the gene expression changes persist for at least 6 d of subsequent normal glycemia, as do NF-κB–induced increases in monocyte chemoattractant protein 1 and vascular cell adhesion molecule 1 expression. Hyperglycemia-induced epigenetic changes and increased p65 expression are prevented by reducing mitochondrial superoxide production or superoxide-induced α-oxoaldehydes. These results highlight the dramatic and long-lasting effects that short-term hyperglycemic spikes can have on vascular cells and suggest that transient spikes of hyperglycemia may be an HbA1c–independent risk factor for diabetic complications.
                Bookmark

                Author and article information

                Journal
                Eur Heart J
                Eur. Heart J
                eurheartj
                ehj
                European Heart Journal
                Oxford University Press
                0195-668X
                1522-9645
                14 August 2013
                2 May 2013
                2 May 2013
                : 34
                : 31
                : 2436-2443
                Affiliations
                [1 ]Cardiology and Cardiovascular Research, University of Zürich , Zürich, Switzerland
                [2 ]IRCCS Neuromed, Pozzilli, Italy
                [3 ]Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School , Boston, MA 02115, USA
                [4 ]Cardiology, Department of Clinical and Molecular Medicine, University of Rome ‘Sapienza’ , Rome, Italy
                Author notes
                [* ]Corresponding author. Tel: +39 06 33775979, Fax: +39 06 33775061, Email: f_cosentino@ 123456hotmail.com
                Article
                eht149
                10.1093/eurheartj/eht149
                3743069
                23641007
                0ddf0fc8-3518-44af-b7dc-b3aae4c567d0
                © The Author 2013. Published by Oxford University Press on behalf of the European Society of Cardiology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

                History
                : 14 September 2012
                : 18 October 2012
                : 12 March 2013
                Categories
                Reviews

                Cardiovascular Medicine
                diabetes,vascular disease,pathophysiology
                Cardiovascular Medicine
                diabetes, vascular disease, pathophysiology

                Comments

                Comment on this article