Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A comparative study of the role of the major proteinases of germinated common bean (Phaseolus vulgaris L.) and soybean (Glycine max (L.) Merrill) seeds in the degradation of their storage proteins.

      Journal of Experimental Botany

      Species Specificity, Amino Acid Sequence, enzymology, Soybeans, metabolism, chemistry, Soybean Proteins, Seeds, Seed Storage Proteins, Plant Proteins, Phaseolus, isolation & purification, Peptide Hydrolases, Molecular Sequence Data, Kinetics, Hydrolysis, Globulins, Antigens, Plant

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two types of cysteine proteases, low-specificity enzymes from the papain family and Asn-specific from the legumain family are generally considered to be the major endopeptidases responsible for the degradation of seed storage proteins during early seedling growth. The action of the corresponding enzymes (CPPh1 and LLP, respectively) from common bean (Phaseolus vulgaris L.) on phaseolin (the common bean storage protein), and on the homologous soybean (Glycine max (L.) Merrill) storage protein, beta-conglycinin, was studied. Under the action of LLP, proteolysis of phaseolin was limited to cleavage of its interdomain linker. No cleavage of the interdomain linker occurred in beta-conglycinin with LLP. LLP action was restricted to splitting off the disordered N-terminal extensions of alpha and alpha' subunits. No extensive hydrolysis (degradation to short TCA-soluble peptides) of either protein occurred under the action of LLP. CPPh1 cleaved the phaseolin subunits into roughly half-sized fragments at the onset of proteolysis. The cleavage was accompanied by a small (8-10%) decrease of protein. No decrease of protein occurred with further incubation. Thus the two most active proteinases detected in common bean seedlings individually were incapable of the extensive degradation of phaseolin. Extensive hydrolysis of phaseolin was only achieved by the consecutive action of LLP and CPPh1. Similar cleavages occurred during the action of CPPh1 on beta-conglycinin. However, by contrast with phaseolin, CPPh1 by itself accomplished the extensive hydrolysis of beta-conglycinin. The differences in the course of proteolysis of the proteins studied were determined by their structural peculiarities.

          Related collections

          Author and article information

          Journal
          15333645
          10.1093/jxb/erh247

          Comments

          Comment on this article