46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Starch digestibility: past, present, and future : Starch digestibility: past, present, and future

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.

          The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD(+), oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27(kip1) phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resistant starch: promise for improving human health.

            Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glycemic index: overview of implications in health and disease.

              The glycemic index concept is an extension of the fiber hypothesis, suggesting that fiber consumption reduces the rate of nutrient influx from the gut. The glycemic index has particular relevance to those chronic Western diseases associated with central obesity and insulin resistance. Early studies showed that starchy carbohydrate foods have very different effects on postprandial blood glucose and insulin responses in healthy and diabetic subjects, depending on the rate of digestion. A range of factors associated with food consumption was later shown to alter the rate of glucose absorption and subsequent glycemia and insulinemia. At this stage, systematic documentation of the differences that exist among carbohydrate foods was considered essential. The resulting glycemic index classification of foods provided a numeric physiologic classification of relevant carbohydrate foods in the prevention and treatment of diseases such as diabetes. Since then, low-glycemic-index diets have been shown to lower urinary C-peptide excretion in healthy subjects, improve glycemic control in diabetic subjects, and reduce serum lipids in hyperlipidemic subjects. Furthermore, consumption of low-glycemicindex diets has been associated with higher HDL-cholesterol concentrations and, in large cohort studies, with decreased risk of developing diabetes and cardiovascular disease. Case-control studies have also shown positive associations between dietary glycemic index and the risk of colon and breast cancers. Despite inconsistencies in the data, sufficient, positive findings have emerged to suggest that the dietary glycemic index is of potential importance in the treatment and prevention of chronic diseases.
                Bookmark

                Author and article information

                Journal
                Journal of the Science of Food and Agriculture
                J. Sci. Food Agric
                Wiley
                00225142
                March 30 2018
                Affiliations
                [1 ]Instituto Politécnico Nacional; CEPROBI; Yautepec Morelos Mexico
                [2 ]Departamento de Ingeniería de Procesos e Hidráulica; Universidad Autónoma Metropolitana-Iztapalapa; Mexico, City Mexico
                [3 ]Department of Food Technology; Engineering and Nutrition, Lund University; Lund Sweden
                Article
                10.1002/jsfa.8955
                29427318
                0ded3375-7527-4c92-96cf-c1438f0ae18f
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article