61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Krüppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi: 10.1371/journal.pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic phenomenon of canalization can be understood at a quantitative and predictive level by the application of a precise dynamical model.

          Author Summary

          Animals have an astonishing ability to develop reliably in spite of variable conditions during embryogenesis. More than 60 years ago, it was proposed that this property of development, called canalization, results from genetic interactions that adjust biochemical reactions so as to bring about reliable outcomes. Since then, a great deal of progress has been made in understanding the buffering of genotypic and environmental variation, and individual mutations that reveal variation have been identified. However, the mechanisms by which genetic interactions produce canalization are not yet well understood, because this requires molecular data on multiple developmental determinants and models that correctly predict complex interactions. We make use of gene expression data at both high spatial and temporal resolution for the gap genes involved in the segmentation of Drosophila. We also apply a mathematical model to show that cross regulation among the gap genes is responsible for canalization in this system. Furthermore, the model predicted specific interactions that cause canalization, and the prediction was validated experimentally. Our results show that groups of genes can act on one another to reduce variation and highlights the importance of genetic networks in generating robust development.

          Abstract

          During Drosophila development, the expression patterns of gap genes are much less variable than the Bicoid morphogen gradient. Modeling and experiments show that this specific instance of canalization or developmental robustness occurs by gap gene cross regulation.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Physics of chemoreception.

          Statistical fluctuations limit the precision with which a microorganism can, in a given time T, determine the concentration of a chemoattractant in the surrounding medium. The best a cell can do is to monitor continually the state of occupation of receptors distributed over its surface. For nearly optimum performance only a small fraction of the surface need be specifically adsorbing. The probability that a molecule that has collided with the cell will find a receptor is Ns/(Ns + pi a), if N receptors, each with a binding site of radius s, are evenly distributed over a cell of radius a. There is ample room for many indenpendent systems of specific receptors. The adsorption rate for molecules of moderate size cannot be significantly enhanced by motion of the cell or by stirring of the medium by the cell. The least fractional error attainable in the determination of a concentration c is approximately (TcaD) - 1/2, where D is diffusion constant of the attractant. The number of specific receptors needed to attain such precision is about a/s. Data on bacteriophage absorption, bacterial chemotaxis, and chemotaxis in a cellular slime mold are evaluated. The chemotactic sensitivity of Escherichia coli approaches that of the cell of optimum design.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Waddington's canalization revisited: developmental stability and evolution.

            Most species maintain abundant genetic variation and experience a range of environmental conditions, yet phenotypic variation is low. That is, development is robust to changes in genotype and environment. It has been claimed that this robustness, termed canalization, evolves because of long-term natural selection for optimal phenotypes. We show that the developmental process, here modeled as a network of interacting transcriptional regulators, constrains the genetic system to produce canalization, even without selection toward an optimum. The extent of canalization, measured as the insensitivity to mutation of a network's equilibrium state, depends on the complexity of the network, such that more highly connected networks evolve to be more canalized. We argue that canalization may be an inevitable consequence of complex developmental-genetic processes and thus requires no explanation in terms of evolution to suppress phenotypic variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis.

              Using differential interference contrast optics, combined with cinematography, we have studied the morphological changes that the living, syncytial embryo undergoes from stage 10 through 14 of Drosophila embryogenesis, that is just prior to and during formation of the cellular blastoderm. We have supplemented these studies with data collected from fixed, stained, whole embryos. The following information has been obtained. The average duration of nuclear cycles 10, 11, 12 and 13 is about 9, 10, 12 and 21 min, respectively (25 degrees C). In these four cycles, the duration of that portion of the mitotic period that lacks a discrete nuclear envelope is 3, 3, 3 and 5 min, respectively. The length of nuclear cycle 14 varies in a position-specific manner throughout the embryo, the shortest cycles being of 65 min duration. During nuclear cycles 10 through 13, it is commonly observed in living embryos that the syncytial blastoderm nuclei enter (and leave) mitosis in one of two waves that originate nearly simultaneously from the opposite anterior and posterior poles of the embryo, and terminate in its midregion. From our preparations of quick-frozen embryos, we estimate that these mitotic waves take on average about half a minute to travel over the embryonic surface from pole to equator. The yolk nuclei, which remain in the core of the embryo when the rest of the nuclei migrate to the periphery, divide in synchrony with the migrating nuclei at nuclear cycles 8 and 9, and just after the now peripherally located nuclei at nuclear cycle 10. After cycle 10, these yolk nuclei cease dividing and become polyploid. The syncytial embryo has at least three distinct levels of cytoskeletal organization: structured domains of cytoplasm are organized around each blastoderm nucleus; radially directed tracks orient colchicine-sensitive saltatory transport throughout the peripheral cytoplasm; and a long-range organization of the core of the embryo makes possible coherent movements of the large inner yolk mass in concert with each nuclear cycle. This highly organized cytoplasm may be involved in providing positional information for the important process of nuclear determination that is known to occur during these stages.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                March 2009
                10 March 2009
                : 7
                : 3
                : e1000049
                Affiliations
                [1 ] Department of Applied Mathematics and Statistics, and Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
                [2 ] Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnical University, St. Petersburg, Russia
                [3 ] Theoretical Department, The Ioffe Physico-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
                [4 ] EMBL/CRG Research Unit in Systems Biology, CRG–Centre de Regulació Genòmica, Barcelona, Spain
                [5 ] Institute of Mathematical Research of Rennes, University of Rennes 1, Rennes, France
                [6 ] Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
                Cambridge University, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: reinitz@ 123456odd.bio.sunysb.edu
                Article
                08-PLBI-RA-4294R3 plbi-07-03-02
                10.1371/journal.pbio.1000049
                2653557
                19750121
                0df02ab0-4ec0-41da-b485-b24add09f35c
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 6 October 2008
                : 14 January 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Biophysics
                Computational Biology
                Developmental Biology
                Evolutionary Biology
                Genetics and Genomics
                Mathematics
                Custom metadata
                Manu, Surkova S, Spirov AV, Gursky V V, Janssens H, et al. (2009) Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biol 7(3): e1000049. doi: 10.1371/journal.pbio.1000049

                Life sciences
                Life sciences

                Comments

                Comment on this article